Сейчас. Физика времени (Мюллер) - страница 74

Жизнь представляет собой локальный пример уменьшения энтропии. Растения забирают немногочисленный рассеянный углерод из воздуха, соединяют его с водой, получаемой из почвы, и при участии энергии солнечного света создают сложные молекулы крахмалов, которые организуются в высокоупорядоченные структуры. Энтропия молекул, из которых состоят растения, уменьшается, но общая энтропия повышается, главным образом за счет тепла, выбрасываемого в атмосферу.

Энтропия – это беспорядок

Часто говорят, что энтропией измеряется степень беспорядка и хаоса. Состояние газа с низкой энтропией подразумевает нахождение молекул на одной области пространства с высокой степенью организации. Состояние с высокой энтропией означает, что молекулы распределены в значительном пространстве и не упорядочены. Высокая энтропия относится к состоянию, которое возникает с большой вероятностью в результате случайных процессов. Низкая энтропия – такая организация вещества, которое в реальности маловероятно. Высокоорганизованное состояние, как следует из самого названия, не может быть итогом случайных природных процессов[111].

В принципе, если вы имеете дело с такой системой, как, например, идеальный тепловой двигатель Карно для получения полезной механической работы путем использования горячих газов, общая энтропия может остаться постоянной. Но этот идеальный двигатель пока не создан. На практике энтропия всегда увеличивается – в том смысле, что увеличивающийся хаос неизбежен. Перенос тепла от горячего объекта к холодному увеличивает энтропию. Наша Вселенная теряет свою организованность и медленно, но верно, становится все более подвержена случайностям.

Разбейте чашку – и вы увеличите энтропию ее молекул. Будучи разъединенными, они находятся ближе к первоначальному естественному случайному состоянию. Попробуйте выбросить эти молекулы в космическое пространство, позвольте им рассеяться – вы нарушите порядок и увеличите энтропию. Создавая чашку, мы уменьшаем локальную энтропию за счет остальной Вселенной. Большая часть того, что мы считаем цивилизацией, основана на локальных уменьшениях энтропии.

Энтропия и квантовая физика

Статистическая физика удивительным образом привела к открытию физики квантовой. Нагрейте какой-то предмет до нескольких тысяч градусов по Фаренгейту, и он засветится видимым светом: этот свет будет красным. Статистическая физика объясняла это излучением вибрацией молекул в предмете[112]. Считалось, что движущиеся при этом электрические заряды порождали свет. Но расчеты, сделанные с позиций статистической физики, показывали, что это излучение должно иметь бесконечную энергию при уменьшении длины волны излучения (то есть смещении в ультрафиолетовую область), и эту проблему назвали