Сейчас. Физика времени (Мюллер) - страница 78

было бы для вас вполне очевидным. Чайная чашка – это, конечно, очень наглядный пример, но можно подумать и о громадном множестве других примеров. Сгорают звезды. Истощаются запасы жидких углеводородов. Мы умираем, а наши тела разлагаются. Увеличение энтропии неизбежно.

Предположим, вас наделили полным знанием о двух мгновениях времени в нашей Вселенной и попросили определить, какое из них случилось первым. Как вы можете это сделать? Ответ простой: вычислить энтропию двух моментальных снимков. Тот момент, энтропия которого была меньше, произошел раньше. Физики считают, что энтропия вполне убедительно задает направление стрелам времени.

Первичные и вторичные законы физики

Второй закон термодинамики, устанавливающий, что энтропия увеличивается, вообще-то довольно странный. Он ничего не прибавляет физике, кроме утверждения, что более вероятные процессы происходят с большей долей вероятности. Почему же тогда это начало квалифицируют как физический закон? Разве эта тавтология не самоочевидна и не тривиальна? И если уравнения механики, электричества и магнетизма – то есть реальной физики – не дают направления времени, почему это делает какой-то довольно ненаучный закон, который на этих областях физики и основывается?

Эддингтон хорошо знал об этом парадоксе. На самом деле он ввел различия в законы физики, разделив их на первичные и вторичные. Энтропия определенно была законом вторичным, выведенным из других законов и не имевшим собственного твердого основания.

Усилим этот парадокс. Давайте исходить из представления об истинности классической физики, то есть той, на которой основывается второе начало термодинамики. В этой физике, если вы знаете точное местоположение и характеристики движения каждой частицы (отставив в сторону принцип неопределенности квантовой физики), разве вы не можете, хотя бы в принципе, предсказать будущее? Здесь не нужны расчеты вероятностей и законы случайностей. Как же тогда могут фундаментальные законы, не имеющие стрелы времени, породить вторичный закон, у которого такая «стрела» имеется?

Ответ в том, что нынешняя Вселенная очень высоко организована – по причинам, которые Эддингтон вначале не мог определить. В нашем мире низкая энтропия. Когда вы заставляете газ, сконцентрированный в одном углу емкости, распределиться по всей этой емкости, вы имеете дело с огромным увеличением энтропии. А материя во Вселенной сосредоточена компактно в разных ее областях, как газ, скопившийся в каком-то углу емкости. Большая часть видимой массы Вселенной обнаруживается в звездах, небольшая часть – в планетах; и все это окружено пустым пространством. (Здесь я не касаюсь вопроса о темной материи, которая была неизвестна во времена Эддингтона.) Так что во Вселенной много пустого пространства, которое могло быть заполнено для увеличения энтропии. Другими словами, дальнейшая организация Вселенной очень маловероятна. Благодаря тому, что сейчас она очень высоко организована и с большой вероятностью идет по пути дезорганизации, время движется вперед.