Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.
Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)
В принципе, у каждой начальной точки есть некое конечное положение, которое можно вычислить. Если в конечном счете все осцилляторы запускались синхронно, то такую начальную точку мы называли «хорошей». В противном случае мы называли ее «плохой». Нам с Ренни не удалось найти способ, который позволял бы нам точно сказать, какие точки являются «хорошими», а какие – «плохими», однако нам удалось доказать, что почти все точки являются хорошими. Плохие точки действительно существуют, но они встречаются настолько редко и настолько сильно разбросаны, что если собрать их все вместе, то занимаемая ими площадь стремится к нулю. Иными словами, если выбрать какую-либо точку произвольным образом, то у вас чрезвычайно мало шансов выбрать плохую точку.
Это может показаться абсурдным: если плохие точки существуют, то вы можете полагать, что с вашим-то везением вы наверняка выберете плохую. Спешу вас успокоить: не выберете. Это практически то же самое, как если бы вы бросали дротик в мишень для игры в «дартс» в надежде, что он попадет точно в разделительную линию между двумя соседними концентрическими областями. Это чрезвычайно маловероятно. А теперь представьте, что толщина этой разделительной линии стремится к нулю (а именно это требуется, если ее площадь должна равняться нулю). Теперь, надеюсь, вы понимаете, почему у вас практически нет шансов попасть дротиком в эту линию.