Алгоритмы для жизни: Простые способы принимать верные решения (Гриффитс, Кристиан) - страница 201

(Вовлечение противника в бесплодные рекурсии может оказаться эффективной стратегией также и в других играх. Один из самых ярких, странных и захватывающих эпизодов в истории шахматного противостояния человека и машины произошел в 2008 году во время сражения американского гроссмейстера Хикару Накамура с ведущей шахматной компьютерной программой Rybka. В игре, где каждая из сторон получала всего три минуты на все ходы или ей автоматически присуждался проигрыш, преимущество, разумеется, отдавалось компьютеру, способному оценить миллионы комбинаций в секунду и сделать ход без использования мышц. Но Накамура мгновенно создал на доске затор, делая повторяющиеся, бессмысленные ходы настолько быстро, насколько позволяло нажатие кнопки на часах. В то время как компьютер впустую тратил драгоценные мгновения на бесплодные поиски победного варианта, которого даже и не существовало, и упорно пытался предвидеть все возможные будущие ходы противника, Накамура играл в шахматы фактически спустя рукава. Когда компьютер уже почти исчерпал свое время и начал переставлять фигуры так, чтобы хотя бы не проиграть по часам, Накамура наконец открыл свою позицию и разгромил соперника.)

Как же профессиональные игроки выходят из ситуации, зная опасность рекурсии? Они используют теорию игр. «Порой вы можете придумать причины, объясняющие, почему вы играете именно так, но зачастую ваши худшие игры становятся таковыми по причинам, которые на самом деле не стоит и упоминать, – объясняет Дэн Смит. – Я прикладываю немало усилий, чтобы воспользоваться базовым уровнем теории в большинстве ситуаций… Я всегда начинаю со знания или попытки узнать, что такое Нэш».

Так что же такое Нэш?

Достижение равновесия

Вы знаете правила, и я их тоже знаю…

Мы знаем игру, и мы собираемся в нее сыграть.

Рик Эстли

Теория игр охватывает невероятно широкий спектр сценариев сотрудничества и конкуренции, но начиналось все с покера – соревнования между двумя людьми, где выигрыш одного из игроков означает проигрыш другого. Математики, анализирующие эти игры, пытаются найти так называемое равновесие – некий набор стратегий, которым оба игрока могут следовать таким образом, чтобы ни один из игроков не хотел бы изменить собственную игру, даже учитывая игру соперников. Это называется равновесием потому, что это состояние стабильности: никакое количество дальнейших обдумываний не предоставит никому из игроков другого выбора. Я удовлетворен своей стратегией, принимая во внимание вашу, а вы довольны вашей стратегией, учитывая мою.

Например, в детской игре «Камень, ножницы, бумага» равновесие достигается примерно каждую треть времени при совершенно случайном выборе одного из названных жестов. Устойчивым это равновесие делает то, что раз оба игрока приняли эту