Наука и удивительное (Вайскопф) - страница 53

Количественное изучение полученной таким способом интерференционной картины позволяет измерить длину этой таинственной «электронной волны». Ее длина зависит от скорости электрона: чем больше скорость, тем меньше длина волны; для электронов с энергией в несколько электроновольт длина волны примерно равна размеру атома. Это действительно очень малая величина, и поэтому так трудно обнаружить волновую природу электронных лучей. В большинстве практических приложений электронных лучей (например, в телевизионных трубках) их волновая природа вообще не играет никакой роли.

Тем самым было сделано фундаментальное открытие — обнаружена волновая природа частиц. Полученный результат весьма поразителен и в высшей степени неожидан. Было выполнено множество экспериментов, прежде чем физики действительно убедились в том, что волновые эффекты не были вызваны какой-либо иной причиной. Однако все эти опыты делали все более ясным участие волн в движений электронов и других атомных частиц, например протонов.

Теперь возникает очевидный вопрос: как электрон может быть одновременно и частицей и волной? Волна — это нечто, непрерывным образом распределенное в пространстве, тогда как частица строго локализована. В любой момент частица находится здесь, а не там, а волна есть «натяжение» в пространстве, которое должно захватывать по крайней мере несколько длин волн, чтобы представлять то, что мы можем назвать волной. Можно ли сделать решающий опыт, чтобы получить однозначный и недвусмысленный ответ? Чем же в действительности является электрон — частицей или волной?

Это, вероятно, наиболее интересный вопрос современной физики. Но прежде чем обсуждать его, мы должны узнать самую поразительную вещь об электронных волнах, а именно то, что двойственная природа электронов как частиц и волн дает ключ к загадке строения атома! Неожиданные свойства электронов, вращающихся вокруг атомного ядра, прямо связаны с их волновой природой.

Свойства волн в ограниченном пространстве. Для того чтобы понять связь между электронными волнами и свойствами атомов, мы должны сначала изучить особенности поведения волн, распространяющихся в ограниченном пространстве.

Возьмем простейший пример — волны, бегущие по длинной веревке. Если веревка очень длинная, то мы можем создать бегущую волну, сообщая веревке небольшой, перпендикулярный ее направлению импульс. Если натянутая веревка привязана за один конец к неподвижному предмету, то импульс побежит по ней и в конце концов возвратится к нам, отразившись от того конца, где она привязана. Двигая соответствующим образом рукой, мы можем сообщить волне на веревке любую форму — по желанию сделать волну короткой или длинной. При прохождении длинной волны будут происходить медленные колебания, а при коротких волках веревка будет колебаться быстро. Теперь закрепим веревку между двумя близкими точками. При этом лучше рассматривать уже не веревку, а струну, натянутую между двумя точками, например струну на скрипке. Форма колебаний такой струны называется