Наука и удивительное (Вайскопф) - страница 57

Рассматривая эти картины, мы замечаем, что, чем выше частота (или энергия), тем мельче структура картины, тем меньше расстояния между гребнями и впадинами волн. Длина волны уменьшается. При переходе к очень высоким частотам (энергиям) структура картины становится столь мелкой, что она выглядит почти непрерывной. Следовательно, описываемое ею движение будет почти таким же, как и у обычной частицы, лишенной волновых свойств. Мы снова убеждаемся в том, что наша волновая картина точно воспроизводит ситуацию в атоме. При больших энергиях квантовые явления становятся несущественными и атом ведет себя, как обычная планетная система. Переход к «плазменным» условиям при большой энергии тоже объясняется волновой природой электрона.

Атом водорода в своем основном состоянии колеблется в соответствии с простейшей из возможных картин (см. первый снимок фото V).

Другие атомы, однако, даже в своих основных состояниях дают более сложные картины. Это стало понятным после того, как Вольфганг Паули сформулировал в 1927 г. весьма важный принцип. Он гласит, что если в атоме находится больше одного электрона, то каждый из них должен создавать различные картины. Поэтому при добавлении электрона должна возникать следующая (по порядку) конфигурация. Основное состояние сложного атома соответствует возбужденному состоянию более простого.

Здесь мы находим объяснение тому, что прибавление или удаление одного электрона так сильно сказывается в атомном мире. Картина, обусловленная последним электроном, определяет конфигурацию всего атома. Это в свою очередь определяет способ, которым соединяются атомы, т. е. то, образуют ли они кристалл, жидкость или газ. Наблюдаемая картина может заметно изменяться при переходе от некоторого числа электронов к ближайшему большему (см. фото V).

В мире атомов количество переходит в качество, одним электроном больше — и свойства полностью изменяются.

Открытое Шредингером фундаментальное значение электронных волн для строения атома и развитие этой теории Гейзенбергом, Максом Борном и Паули составили поворотный пункт в понимании природы человеком, сравнимый с ньютоновским открытием всемирного тяготения, электромагнитной теорией света Максвелла и теорией относительности Эйнштейна. Свойства атома, казавшиеся столь странными и непонятными на основе планетарной модели, нашли свое место в рамках волновой теории. Стоячая волна принимает некоторые определенные формы и частоты, так же как колебания воздуха в органной трубе, колебания скрипичной струны или дрожание водной поверхности в колеблющемся стакане. Всем этим колебаниям соответствует ряд волновых картин, начиная с самой простой, в которой колебания происходят с наименьшей частотой, и кончая более сложными картинами с высокими частотами. То же относится и к электронным волнам в атоме.