Наука и удивительное (Вайскопф) - страница 82

образовались в то время, когда вещество Земли подвергалось естественной бомбардировке протонами и нейтронами, в далеком прошлом при взрыве каких-то звезд. Благодаря большому периоду полураспада этих веществ мы по-прежнему встречаем их на Земле.

Радиоактивность[43] — это превращение несбалансированного, неустойчивого ядра в более устойчивое, сопровождающееся испусканием электрона и нейтрино. Подобный процесс весьма загадочен. Мы не знаем ни его значения, ни его связи с другими ядерными явлениями. Идет он очень медленно. Годы, часы, даже секунды — это очень длинные промежутки времени для ядерной системы, где движение происходит исключительно быстро. Резерфорд однажды сказал, что радиоактивные превращения идут так медленно, что практически вообще не происходят! Однако они есть. Даже отдельный свободный нейтрон живет всего лишь 10 мин, если он не «встроен» в ядро. Он самопроизвольно превращается в более устойчивый протон, испуская при этом электрон и нейтрино. Но как часть нерадиоактивного ядра нейтрон столь же устойчив, как и протон.

Ядерная энергия, ядерное горение

Тепло от горения угля происходит из соединения атомов кислорода и углерода, образующих молекулу, в которой они прочно связаны друг с другом. Энергия освобождается во всех случаях соединения атомов в прочно связанную единицу. Можно ли применить тот же принцип к связям в ядре? Энергия производится при соединении нейтронов и протонов в ядра. Ядерное пламя должно существовать и быть значительно сильнее обычного пламени, так как энергии, участвующие в ядерных явлениях, в сотни тысяч раз больше энергии электронов на атомных орбитах.

Рассмотрим простой пример ядерного горения. Ядро гелия состоит из двух протонов и двух нейтрон нов, связанных ядерными силами. Ядро углерода состоит из шести протонов и шести нейтронов, которые прочно связаны друг с другом; поэтому можно представить себе, что ядро углерода — это три тесно связанных ядра гелия. Если бы можно было втиснуть три ядра гелия в такой малый объем, чтобы между ними начали действовать ядерные силы, то ядра гелия слились бы воедино, образуя ядро углерода и выделяя большую энергию. Итак, в ядерном пламени гелий сгорал бы в углерод.

Почему же гелий на Земле не горит в ядерных пламенах? В обычных условиях очень трудно заставить три ядра гелия сблизиться столь тесно. Во-первых, они окружены электронами; во-вторых, будучи заряжены положительно, они отталкивают друг друга. Только при чрезвычайно высоких температурах, порядка миллиардов градусов, электроны отрываются, а ядра получают достаточно энергии для преодоления электрического отталкивания и сталкиваются друг с другом. Такие температуры нужны, чтобы зажечь гелиевый огонь, который, однажды загоревшись, будет выделять огромные количества энергии, а его температура будет в миллионы раз выше, чем у обычного пламени. Мы полагаем в настоящее время, что в центре некоторых звезд горит такой гелиевый огонь, снабжающий звезду энергией, которую она затем излучает. Такова звезда в верхнем левом углу созвездия Ориона.