Наука и удивительное (Вайскопф) - страница 90

.

Атомы содержат не только электроны, но и ядра, которые в свою очередь состоят из протонов и нейтронов. Возникает вопрос: существуют ли антипротоны и антинейтроны? Поскольку массы нейтронов и протонов очень велики, для создания такой пары, частица — античастица, потребуется значительно большая энергия, чем для создания пары электрон— позитрон; она должна достигать нескольких миллиардов электроновольт. Когда в Беркли была построена установка на 6 Бэв (рис. 50), физики всего мира с беспокойством ожидали результата решающего опыта — существует ли антипротон?

Рис. 50. Бэватрон в Беркли.


Ответ был утвердительным. То, что протон и нейтрон имеют античастицы, было показано Сегре, Чемберленом, Вигандом и Ипсилантисом. Тем самым было установлено, что все частицы, из которых состоит вещество, имеют своих антидвойников. Это открытие доказало, что существует антивещество, состоящее из антипротонов, антиэлектронов и антинейтронов. Если антивещество придет в соприкосновение с обычным веществом, начнется взрывная аннигиляция. Антипротоны и протоны взаимно аннигилируют, и большое количество энергии, заключенной в массе, перейдет к разлетающимся квантам ядерных сил, мезонам. Вот почему антивещество никогда не встречается на Земле, если только оно не произведено на наших установках. Оно может существовать только до момента соприкосновения с обыкновенным веществом.

Перейдем теперь к третьей группе высокоэнергетических явлений, к появлению странных частиц. Когда протоны или нейтроны бомбардируют частицами очень высоких энергий, они иногда превращаются в частицы нового типа, называемые гиперонами. Гиперон обладает большей энергией, чем протон, и может рассматриваться как более высокое квантовое состояние протона. Атом тоже можно перевести в более высокое квантовое состояние, сообщая ему необходимый добавок энергии. Однако положение здесь не так уж просто: образование гиперонов всегда сопровождается одновременным рождением κ-мезонов, которые, по-видимому, тоже являются квантами ядерного поля, но обладают большей энергией, чем π-мезоны. Физики все еще только стремятся понять смысл этого явления.

Четвертая группа наблюдений характерна для физики высоких энергий. Все недавно открытые частицы: π-мезон, κ-мезон, гипероны — неустойчивы. Они имеют очень короткое время жизни, существуя около одной миллиардной доли секунды или даже меньше, а потом превращаются в другие частицы. Например, квант ядерного поля, π-мезон, живет только 10>-8сек. После этого он превращается в пару электрон — нейтрино. Положение здесь осложняется тем, что в этой паре мы имеем не обычный электрон, а тяжелую его разновидность с массой, примерно в 200 раз превышающей массу обычного электрона. Его принято называть μ-мезоном, но такое название не очень удачно, так как мезоны суть кванты поля, а тяжелый электрон — это обычная частица.