Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 212

>слева — лифт неподвижен; справа — лифт движется с ускорением.


Мы предполагаем (первый закон Ньютона), что в состоянии равновесияW = —F>1, где F>1 — реакция площадки весов. Далее (третий закон Ньютона), сила F>1 равна и противоположна силе F>2 давления тела на площадку весов, и весы измеряют силу F>2. Третий закон Ньютона ничего не говорит о соотношении между силой W и любой из сил F>1 и F>2. Он говорит только о том, что F>1 и F>2 равны и противоположны друг другу, (Разумеется, самой силе W отвечает равная и противоположная сила реакции, направленная вверх, — притяжение, которое испытывает огромная Земля со стороны вашего тела.)

Если вся эта система тел движется ускоренно вверх (как в лифте в начале подъема), то сила F>1 должна быть больше силы W, так что результирующая сила [F>1W] будет придавать ускорение вверх и вашему телу в соответствии с соотношением F = Ma; но сила F>2 по-прежнему будет равна силе F>1 и противоположна ей по направлению. В этом случае весы измерят F>2 (или F>1), но не W.


Демонстрация действия и противодействия

Если равенство действия и противодействия кажется очевидным[136] проявлением симметрии, вы можете рассматривать его как тривиальный факт, своего рода 2 + 2 = 4, и вывести отсюда закон сохранения количества движения. Но большинство ученых считает такой подход чрезмерно наивным и полагает, что равенство действия и противодействия нельзя доказать, не измеряя количества движения.


ОБОДРЯЮЩИЕ ОПЫТЫ

Можно предложить несколько опытов, которые если и не доказывают равенства действия и противодействия, то во всяком случае иллюстрируют этот принцип. Опыты, изображенные схематически на фиг. 213 и 214, кажутся на первый взгляд удачными, но их можно истолковать как проверку самих пружин, проверку, которая ничего не доказывает, если только мы не примем в качестве допущения то, что стремимся доказать.




Фиг. 213.Попытки продемонстрировать принцип «действие равно противодействию».

>Показания пружинных динамометров а и b одинаковы, даже если А и В (либо один из них) стоят на роликовых коньках и движутся с ускорением. Динамометр а показывает силу человека A, а динамометр b — силу человека В. Но откуда динамометры знают, чью силу они измеряют?


Опыт 6. Пожалуй, лучшим из этих опытов следует считать тот, где меньше всего деталей, запутывающих рассмотрение. На фиг. 214 показан опыт с кольцом из пружинной стали, который демонстрирует силы, возникающие при деформации кольца.

Соображения симметрии не позволяют нам приписать деформацию кольца действию усилия, приложенного именно с одного конца, а не с другого, а заставляют поверить в то, что тянущие силы равны и противоположно направлены. Кольцо деформируется в один и тот же симметричный овал независимо от того, действует ли на него стена или люди, покоятся ли они или движутся любым образом. (В лучшем случае эти опыты приносят нам успокоение. В худшем случае — это надувательство, цель которого заставить нас думать.) Мысль о том, что этот опыт может дать какое-то подтверждение третьего закона Ньютона, все же соблазнительна. Представим себе, что кольцо из пружины становится все тоньше и тоньше, пока его масса не окажется практически равной нулю. В таком случае даже при движении с ускорением на кольцо не должна действовать результирующая сила (первый закон Ньютона). Поэтому обе действующие на кольцо силы должны быть равны и противоположно направлены. Означает ли это, что третий закон Ньютона доказан? Отнюдь нет. Это совсем не те силы, равенство которых мы хотим доказать, а силы, приложенные со стороны разных тел к одному и тому же телу! Мы же хотим узнать, равно ли противодействие кольца, приложенное к одному из тел, силе, приложенной к кольцу со стороны этого тела, и направлено ли оно противоположнотянущей силе.