Физика для любознательных. Том 1. Материя. Движение. Сила (Роджерс) - страница 248

4. Это движение, в случае которого график зависимости смещения от времени представляет собой синусоиду.

Математика, а также простые соображения из механики в первом определении показывают, что во всех случаях происходит одно и то же движение. Чтобы связать воедино приведенные определения, здесь требуется лишь проделать некоторые выкладки и указать на ряд опытов.


Значение простого гармонического движения

Простое гармоническое движение играет такую же важную роль в описании природы, как движения с постоянной скоростью и с постоянным ускорением, поскольку:

1. Этот вид движения весьма распространен (примерами могут служить маятники, музыкальные инструменты, колеблющиеся детали машин, океанские приливы, переменные токи, свет, соответствующий определенной линии спектра).

2. Период этого движения не зависит от амплитуды (благодаря этому оно используется для измерения промежутков времени).

3. Это движение поддается простому математическому описанию

s = A∙sinkt

откуда следует формула

T = 2π/k

где

k>2 = (Жесткость пружины)/(Масса).

Так можно предсказать величину Т. В других случаях измеряют Т и с помощью полученного значения подсчитывают жесткость пружины.

4. Согласно теореме Фурье, любое периодическое движение можно разложить на простые гармонические составляющие (см. ниже). Разложение легко выполняется методами математического анализа (когда исходное — периодическое движение описывается какой-либо формулой) или с помощью вычислительной машины (когда исходный процесс представлен только графиком). Поэтому на основе простого математического описания гармонических движений можно рассматривать значительно более сложные движения: движение волн в гавани, музыкальные звуки, издаваемые кларнетом, речевые колебания, сейсмические волны…, движения электронов в атоме. Что касается звуков, то наши органы слуха, по-видимому, производят «гармонический анализ» и разлагают сложный звук на чистые тоны.


Гармонический анализ

Теорема Фурье настолько всеобъемлюща, что трудно указать пределы ее приложения. Она не ограничивается периодическими движениями или повторяющимися процессами. Вот несколько примеров:

а) На фиг. 269 приведен график звуковых колебаний, создаваемых флейтой. Результат анализа кривой в очевиден: она представляет собой сумму сигналов, в которой значительная доля приходится на колебания а и содержится некоторая доля колебаний б. (Если подуть чуть сильнее, возникнет комбинация исходного тона и одного из его октавных повторений — обертонов — приятный музыкальный звук, хотя и необычный для флейты.)