Большое космическое путешествие (Тайсон, Стросс) - страница 77

– в ходе нее энергия будет поглощаться. Если я попытаюсь запустить деление ядра железа, то снова получится эндотермическая реакция. На железе все стопорится: никакой энергии из него не извлечь.

Звезды заняты синтезом энергии. Если звезда кочегарит себе, выплавляя по порядку один элемент за другим, и в результате получает энергию, то перед вами довольная звезда. Благодаря извлекаемой энергии недра звезды остаются горячими, а тепловое давление раскаленного газа не дает звезде схлопнуться под собственным весом. Допустим, у меня есть главная последовательность таких звезд, которые вдесятеро массивнее Солнца: они состоят в основном из водорода и гелия, а в ядре водород по-прежнему преобразуется в гелий. Это акт 1. В акте 2 ядро звезды состоит уже из чистого гелия, но в газовой оболочке звезды по-прежнему присутствуют водород и гелий. Термоядерный синтез в ядре прекращается, ядро больше не в состоянии удерживать оболочку – и что происходит со звездой? Она сжимается, нарастает давление, и температура достигает значений, достаточных для слияния гелия. Для слияния ядер гелия (ppnn + ppnn) требуется более высокая температура, чем для слияния ядер водорода (p + p), так как в каждом ядре гелия (ppnn) по два протона, соответственно количество взаимно отталкивающихся положительных зарядов удваивается. В следующей сцене второго акта (при 100 миллионах кельвинов) начинается термоядерный синтез элементов из гелия, и звезда остается стабильной. В самом центре очень горячего ядра гелий превращается в углерод; вне ядра продолжается термоядерный синтез на основе водорода. В итоге получается шар с углеродной сердцевиной, и там недостаточно жарко, чтобы продолжать синтез уже на основе углерода, поэтому синтез прекращается. Ядро продолжает сжиматься, температура вновь возрастает, и начинается синтез на основе углерода. Это акт 3. Теперь, в результате углеродного синтеза, в центре углеродного ядра образуется кислород, а углеродное ядро находится в центре гелиевого. Гелиевое ядро, в свою очередь, окружено звездной оболочкой, в которой есть водород и гелий. Получилась такая луковица, в которой элементы расположены послойно, причем в центре луковицы жарче всего. При каждой из реакций выделяется энергия. В конце концов в центре образуется железное ядро, обернутое слоями все более и более легких элементов. Все это – новая химическая присадка к Галактике.

Но эти элементы по-прежнему заключены в звезде, у них должен быть шанс каким-то образом из нее вырваться – ведь именно из этих элементов мы с вами и состоим! Сегодня известно, что железо – это тупик синтеза. Когда в ядре накапливается железо, синтез останавливается и звезда схлопывается. Когда звезда пытается запустить синтез на основе железа, ее энергия попросту истощается, и схлопывание ускоряется. Звезды должны генерировать энергию, а не поглощать ее. В результате ускоряющегося схлопывания звезда претерпевает гравитационный коллапс, и в центре ее остается сверхплотная нейтронная звезда. При образовании нейтронной звезды выделяется такая кинетическая энергия, которой хватает, чтобы просто сдуть всю оболочку и внешнее ядро. Происходит колоссальный взрыв, звезда несколько недель сияет в миллиарды раз ярче Солнца. Внутренность звезды развеивается по галактике, то есть в