Из указанных соображений становится ясно, что построение общей теории относительности должно одновременно привести и к построению теории тяготения, потому что гравитационное поле можно «создать» простым изменением координатной системы. Кроме того, очевидно, что принцип постоянства скорости света в пустоте должен быть изменен, ибо легко убедиться в том, что траектория луча света относительно системы К’ в общем случае должна быть кривой, если свет относительно системы К распространяется прямолинейно и с определенной постоянной скоростью.
§ 3. Пространственно-временной континуум. Требование общей ковариантности уравнений, выражающих общие законы природы
Так же как и в специальной теории относительности, в классической механике пространственные и временные координаты содержат непосредственный физический смысл. Когда говорят, что точечное событие имеет координату x>1, то это означает следующее. Построенную по правилам евклидовой геометрии при помощи твердых стержней проекцию точечного события на ось X>1 получают, откладывая определенную линейку – единичный масштаб – х>1 раз от начала координат по направлению оси X>1. Когда говорят, что точка имеет координату х>4 = t, то это означает, что по часам (некоторому эталону времени), покоящимся относительно координатной системы, пространственно (практически) совпадающим с точечным событием и выверенным по определенным правилам, прошло х>4 = t периодов, когда наступило точечное событие>10.
Такое понимание пространства и времени всегда представлялось взору физиков, хотя, быть может, большей частью и бессознательно. Это ясно видно из той роли, какую играют эти понятия в физических измерениях. Такое толкование читатель должен был положить также в основу второго рассуждения последнего параграфа для того, чтобы придать ему некоторый смысл. Однако мы покажем теперь, что это толкование нужно отбросить и заменить более общим, чтобы последовательно провести общий постулат относительности, при условии, что специальная теория относительности сохраняется в предельном случае отсутствия гравитационного поля.
Введем в пространстве, свободном от гравитационных полей, галилееву координатную систему К(х, у, z, t) и, кроме того, координатную систему К’(х’, у’, z’, t’), которая равномерно вращается относительно К. Пусть начала координат обеих систем, так же как и их оси Z, все время совпадают друг с другом. Покажем, что вышеприведенные определения, касающиеся физического смысла длин и времен, не пригодны для изучения пространства и времени в системе