На плечах гигантов (Хокинг, Эйнштейн) - страница 39


Перехожу теперь к другим вопросам, связанным с маятником, – теме довольно сухой, по мнению многих, особенно же философов, постоянно занимающихся исследованием самых глубоких проблем природы. Я, однако, не хочу пренебречь этой темой, по примеру Аристотеля, который поражает меня более всего именно тем, что нет, кажется, ни одного достойного внимания явления, мимо которого он прошел бы, не коснувшись его. Поэтому, побуждаемый вашею любознательностью, синьоры, я думаю сообщить вам некоторые свои соображения из области музыки. Эта благородная тема была предметом исследования многих, в том числе и самого Аристотеля, и содержит весьма много интересного. Я надеюсь, что заслужу ваше одобрение, если при помощи простых и убедительных опытов объясню вам чудесные явления из области звуков.

Сагредо. Я не только выражу одобрение, но скажу, что этим вы исполните мое особое желание. Обращаясь со всякими музыкальными инструментами и много размышляя о созвучии, я часто поражался и оставался в полном недоумении, почему одно мне нравится и кажется более приятным, нежели другое, а иное, наоборот, не только не нравится, но представляется крайне неприятным. Общеизвестная проблема о двух натянутых, одинаково звучащих струнах, так что, когда звучит одна струна, другая также приходит в колебание и резонирует, для меня также не совсем ясна, равно как и формы созвучий и многое другое.

Сальвиати. Посмотрим, не сможем ли мы извлечь какой-либо пользы из наших маятников для решения и этих вопросов. Что касается первого пункта, а именно, правильно ли, что один и тот же маятник совершает все свои качания – большие, средние и малые – в совершенно одинаковые промежутки времени, то я сошлюсь на данные нашего Академика, который доказал, что тела, спускающиеся по хорде, соответствующей любой дуге, употребляют для этого одинаковый промежуток времени, будь соответствующая дуга в сто восемьдесят градусов (т. е. с диаметр), сто или шестьдесят градусов, два градуса, полградуса или, наконец, четыре минуты величиною, если предположить, что в конечной низшей точке все эти тела достигают горизонтальной плоскости.

Далее, тела, опускающиеся по дугам, соответствующим хордам, наклонным к горизонту и не превышающим четверти круга или девяноста градусов, совершают движение, как показывает опыт, также в равные промежутки времени и притом меньшие, нежели при движении по хордам, – явление тем более удивительное, что можно было бы ожидать как раз противоположного. Если начальная и конечная точки движения одинаковы и прямая линия есть кратчайшее расстояние между ними, то можно было бы думать, что движение, совершающееся по ней, требует наименьшего времени; на самом деле этого нет: наикратчайшее время, а следовательно, и наибыстрейшее движение мы встречаем при движении по дуге, для которой соответствующая прямая является хордою.