На плечах гигантов (Хокинг, Эйнштейн) - страница 94

отскакивало также с количеством движения, равным семи. Когда тела шли друг другу навстречу, например А с количеством движения, равным двенадцати, и В с количеством движения, равным шести, и если после удара А шло в обратную сторону с количеством движения, равным двум, то В шло в обратную сторону с количеством движения, равным восьми, т. е. оба тела, как показывает вычитание, изменяли свое количество движения на четырнадцать частей. В самом деле, если из количества движения А вычесть двенадцать, то останется нуль, по вычете же еще двух получится количество движения, равное двум, направленное в обратную сторону, также по вычете четырнадцати из количества движения тела В, равного шести, остается количество движения, равное восьми, направленное в обратную сторону.

То же самое происходит и при движении тел в одну сторону: пусть, например, тело А идет более быстро и с количеством движения четырнадцать, В – медленнее и с количеством движения, равным пяти; если после удара А продолжает идти с количеством движения пять, то В пойдет с четырнадцатью, получив девять частей от А.

Подобное соотношение имеет место и в остальных случаях: полное количество движения, рассчитываемое взяв сумму количеств движения, когда они направлены в одну сторону, и разность, когда они направлены в стороны противоположные, никогда не изменяется от удара при встрече тел.

Ошибки в один или два дюйма при измерениях следует приписать трудности произвести их достаточно точно. Была также трудность и в том, чтобы пустить оба тела так, чтобы они одновременно приходили в низшее свое положение, а также чтобы заметить места s и k, до которых тела поднимались после встречи. Неравномерное распределение плотности и неравномерность строения тел, происходящие от случайных причин, приводят также к погрешностям.

Чтобы опровергнуть возражение против высказанного выше правила, для доказательства которого эти опыты и производились, будто бы оно предполагает, что тела или абсолютно тверды, или вполне упруги, т. е. такие, каких в природе не встречается, добавлю, что описанные опыты удаются как с телами мягкими, так и с жесткими и совершенно не зависят от степени твердости их. Если это правило прилагать к телам не вполне твердым, то необходимо лишь уменьшать скорость отражения сообразно степени упругости тел.

По теории Врена и Гюйгенса, тела абсолютно твердые отскакивают одно от другого со скоростью, равною скорости встречи. Точнее, это следовало бы сказать о телах вполне упругих. В телах не вполне упругих скорость расхождения должна быть уменьшаема соответственно степени упругости. Эта степень упругости (если только тела при ударе не повреждаются или не претерпевают удлинений как бы от ударов молотом) вполне определенная и (как мне кажется) производит то, что тела расходятся с такою относительною скоростью, которая составляет постоянную долю относительной скорости их встречи. Так, я производил следующие опыты над мячами, плотно смотанными из шерсти и сильно затем обжатыми. Прежде всего, пустив маятники и определив отражение, я определял степень упругости, затем по найденной степени упругости я рассчитывал отражение для других случаев ударов, и оно согласовалось с опытом: мячи всегда отскакивали друг от друга с относительною скоростью, составлявшей от скорости их встречи 5/9 или около того. Почти с такою же скоростью отскакивали стальные шары, пробковые – с несколько меньшей, для стеклянных это отношение было близко к 15/16. Таким образом третий закон по отношению к удару и отражению подтверждается теорией, вполне согласующейся с опытом.