Подобно этому в блоке или полиспасте усилие руки, тянущей снасть прямо, удержит прямо или наклонно поднимаемый груз в равновесии, если это усилие будет так относиться к весу груза, как скорость отвесного подъема груза относится к скорости руки, тянущей снасть. В часах и подобных им механизмах, состоящих из сцепленных между собою колес, две силы, взаимно противящиеся, т. е. такие, из коих одна способствует, другая же сопротивляется движению, находятся в равновесии, если эти силы обратно пропорциональны скоростям тех частей колес, к коим они приложены. Сила винта, сжимающего тело, так относится к усилию руки, вращающей рукоятку, как окружная скорость той точки рукоятки, где усилие руки приложено, относится к скорости поступания винта против сжимаемого тела. Силы, с коими клин раздвигает две части раскалываемого дерева, так относятся к силе молота, бьющего по клину, как скорость перемещения клина в направлении действующей от бьющего его молота силы относится к скоростям, с которыми части дерева уступают клину, причем эти скорости надо брать по направлениям, перпендикулярным к щекам клина. Совершенно подобно соотношение между силами и во всякого рода машинах. Действительность и назначение машин в том только и состоит, чтобы, уменьшая скорость, увеличивать силу, и наоборот, ибо во всех подобного рода приборах, в сущности, решается такая задача: заданный груз двигать заданною силою или же заданное сопротивление преодолеть заданным усилием.
В самом деле, если машина будет устроена таким образом, чтобы скорости точек приложения движущей силы и сопротивления были обратно пропорциональны этим силам, то движущая сила уравновесит сопротивление, при бóльшем же отношении скоростей преодолеет его. Если отступление от пропорциональности скоростям будет таково, что будут преодолеваться сопротивления, происходящие от трения соприкасающихся и скользящих друг по другу тел, от сцепления тел непрерывных и разъединяемых и от подъема грузов, то, за выключением всех этих сопротивлений, избыточная сила произведет ускорение, пропорциональное ее величине как в частях машины, так и в сопротивляющемся теле.

Межпланетная траектория космического аппарата «Кассини». Чтобы при запуске космических аппаратов рассчитать их траектории, орбиты и гравитационные маневры, иначе называемые «эффектом рогатки», нужна очень сложная математика. Однако эти расчеты целиком и полностью опираются на теоретические модели Нью-тона, которым уже больше трехсот лет. Сложные расчеты орбит и успешный спуск космического зонда на Титан – яркое свидетельство масштабности научных достижений Ньютона.