Жизнь без старости (Скулачёв, Скулачев) - страница 174

Приложение 3. Дыхательная цепь

Термин «дыхательная цепь» означает последовательность реакций, ответственных за перенос атомов водорода или электронов от субстратов дыхания к молекулярному кислороду. Различают два типа дыхательных цепей: сопряженные с трансформацией энергии и не сопряженные с ней. Биологическое значение дыхания первого типа прояснилось благодаря работам В.А. Энгельгардта, открывшего в начале 1930-х гг. дыхательное фосфорилирование. Что касается дыхания второго типа, то первые указания на его активную роль были получены почти на 30 лет позже. Концепция, предполагающая, что несопряженное дыхание может быть биологически полезным, была сформулирована одним из авторов этой книги (В.П.С.) в 1960 г.

В клетках эукариот дыхание, сопряженное с трансформацией энергии, локализовано во внутренней мембране митохондрий. У дышащих бактерий тот же процесс обнаруживается в цитоплазматической мембране, мезосомах или тилакоидах.

Основным источником энергии для жизни на Земле является энергия солнечного света. Такие автотрофные организмы, как цианобактерии и растения, используют энергию квантов света для осуществления двух одновременно протекающих процессов, а именно — для запасания энергии в виде трансмембранной разницы электрохимического протонного потенциала (с последующим ее преобразованием в АТФ) и для разложения воды и переноса полученных электронов на NADP+. В ходе последнего процесса также запасается значительное количество энергии, но уже в виде разности окислительновосстановительных потенциалов, так как редокс-потенциал пары NADP+/NADPH (E0'= -320 мВ) значительно более отрицателен по сравнению с парой О>2>2О (E0'= +820 мВ). Образованные в ходе фотосинтеза АТФ и NADPH используются для превращения углекислого газа в углеводы и далее для синтеза белков, жиров, нуклеиновых кислот, т. е. всех компонентов, необходимых для построения клетки. Гетеротрофные организмы не способны напрямую использовать энергию света, и поэтому основным доступным для них источником является энергия, накопленная растениями прежде всего в виде углеводов. По существу они обращают реакции фотосинтеза. При этом сначала окисляются углеродные атомы углеводов, жирных кислот и аминокислот до СО>2 (гликолиз и цикл Кребса и β-окисление жирных кислот), а полученные таким образом электроны используются для образования NADH. Далее NADH окисляется молекулярным кислородом с образованием воды. NADH-оксидазная реакция сопровождается выделением очень большого количества свободной энергии (порядка 1,1 электрон-вольта при переносе одного электрона с NADH на кислород), которая может быть запасена дыхательной цепью в виде трансмембранной разности электрохимических потенциалов ионов H+. Величина протон-движущей силы на биологических мембранах обычно составляет около 200 мВ, так как при больших величинах электрического потенциала возможен пробой липидного бислоя и утрата запасенной энергии. Показано, что запасание энергии NADH-оксидазной реакции осуществляется путем переноса электрона с NADH на кислород, сопряженного с транслокацией пяти протонов через мембрану. При этом NADH-оксидазная реакция разбита на несколько этапов (в митохондриях животных и человека таких этапов три). Сначала два электрона с NADH переносятся на убихинон NADH-^Q- редуктазой (комплексом I), затем полученный убихинол окисляется цитохромом с посредством CoQH2-цитoхpом с-редуктазы (комплекса Ьс1, или комплекса III) и в завершение восстановленный цитохром с окисляется молекулярным кислородом под действием цитохромоксидазы (комплекса IV). Активность всех этих трех ферментных комплексов сопряжена с генерацией протонного потенциала.