. Эта мысль впервые была высказана известнм физиком Л. Силардом, другом А. Эйнштейна (рис. II.6.2.1).
Рис. II.6.2.1 Л. Силард (справа) и А. Эйнштейн
По Силарду [351], именно уменьшение «клеточности» органов служит главной причиной снижения жизненных функций — основного признака старения организма. Главная беда старения не столько в том, что каждая наша клетка работает все хуже, сколько в том, что клеток этих становится все меньше и меньше. Типичный пример — старческая саркопения, т. е. уменьшение числа клеток (миофибрилл) в скелетных мышцах. Создается впечатление, что в результате действия программы старения скелетной мускулатуры организм вынужден требовать от мышц выполнения тех же функций, несмотря на все уменьшающееся количество миофибрилл. Так же, по-видимому, устроено старение и у большинства других наших тканей. Все это напоминает политику хитрого фабриканта, который заставляет свой завод выпускать прежний объем продукции, сокращая при этом количество рабочих. Чтобы справиться с задачей, у коллектива тружеников есть только одна возможность: придумать что-нибудь новенькое и увеличить производительность труда.
Если верно предположение, что активные формы кислорода суть яд старения, то у стареющих существ окислительный стресс должен увеличиваться с возрастом, а у нестареющих — всю жизнь оставаться на одном и том же уровне. Повышение уровня и токсичности АФК у стареющих растений доказано для целого ряда представителей растительного царства (ссылка см. [184]). Мунне-Бош и сотрудники из Барселоны сравнили зависимость от возраста устойчивость к окислительному стрессу средиземноморского куста Cistus clusii (живет 15 лет) [186,187] и самой долгоживущей из трав Borderea pyrenaiea, реликта пиренейской флоры (зацветает в 50 летнем возрасте, максимальная продолжительность жизни более 300 лет) [184]. Оказалось, что устойчивость к стрессу короткоживущего куста с годами, как и положено, уменьшается, а долгожителя даже несколько увеличивается.
II.6.3 Как помирить геронтологов-оптимистов с пессимистами?
Все, что мы с годами узнаем о клеточном хозяйстве, с несомненностью убеждает нас в крайней степени “бюрократизации” ее управления. В клетке открыты длинные иерархии контролеров. Если какой-то фермент (например, мышечная АТФ-аза актомиозин) выполняет механическую работу, то есть целая цепочка других белков-ферментов, контролирующих этот процесс. Она состоит из собственно контролера N1, непосредственно взаимодействующего с актомиозином; контролера 2, контролирующего работу контролера N1; контролера 3, контролирующего контролера N2, и, наконец, контролера 4, который контролирует контролера 3 и при этом сам контролируется определенным гормоном — высшим командным устройством надклеточного уровня. Количество гормона в крови, в свою очередь, контролируется цепочкой уже других контролеров. Вся эта громоздкая система, действуя слаженно, повышает надежность работы клетки, в частности, уменьшает вероятность накопления ошибок в структурах ДНК и белков. Если все же такие ошибки возникают, то в ДНК они, как правило, исправляются специальными системами контроля и репарации.