Для исследования некоторых биомеханических характеристик собственной двигательной активности человека в безопорном состоянии разработаны стенды на воздушных подушках с различными степенями свободы. Подобные способы моделирования безопорного состояния применялись в целях изучения способности человека прилагать силу при отсутствии трения (W. Е. Baker et al. 1963), проводить монтажные работы вне кабины корабля (R. Е. Geller, 1955), пользоваться силой мышц для производства вращательных движений тела относительно центра масс (W. S. Thaver, 1965). Понятно, что данный метод имеет целью моделирование лишь одного фактора, сопутствующего невесомости, — безопорного положения — и совсем не ставит задачей изменить субъективную оценку действия гравитационных сил или же снизить их реальное действие.
Наконец, последний из методов моделирования невесомости наиболее полно соответствует требованиям исследовательских задач. В данном случае используется состояние невесомости, возникающее у свободно падающего тела. Именно в этом состоянии на тело действуют только силы тяготения, но не возникают силы веса (С. Э. Хайкин, 1967). Первые исследования влияния невесомости на психофизиологические функции человека проводились в «падающих» лифтах, установленных в башнях различной высоты (Т. Lomonako et al., 1960; М. P. Lansberg, 1960; E. T. Benedict, 1961; и др.). Основным недостатком этого способа являлось то, что действие невесомости здесь очень кратковременно (около 2,5 сек.).
Несколько более длительным (от 25 до 45 сек.) период невесомости бывает при полетах самолетов по так называемой параболе Кеплера. Исследования влияния невесомости в таких полетах были начаты Гератеволем (S. J. Gerathewohl, J. Ward, 1960) и продолжены многими исследователями (Е. М. Юганов с соавт., 1961, 1962, 1963, 1968; И. И. Касьян с соавт., 1962, 1963, 1967, 1968; Л. А. Китаев-Смык, 1963, 1964, 1968; D. D. Muller et al., 1963; J. С. Simons et al., 1965; и др.). Преимущество данного способа создания невесомости состоит в том, что здесь имеет место генерализованная реакция всех систем организма на невесомость и тем самым появляется возможность всесторонне исследовать возникающие при этом функциональные сдвиги. Однако относительная кратковременность состояния невесомости (25–45 сек.) позволяет выявить лишь переходные фазы этих сдвигов. Кроме того, наличие угловых ускорений, неизбежно сопровождающих такого рода полеты, определенным образом сказывается на биомеханике локомоций, функциях анализаторов и вегетативных реакциях. Поэтому неудивительно, что данные космических полетов внесли значительные поправки в результаты исследований, проведенных с использованием описанного способа моделирования невесомости.