< Размерностную несогласованность основных фракталов можно использовать для трансформации интуитивного понятия фрактала в строго математическое. Я решил сосредоточиться на двух определениях, каждое из которых ставит в соответствие всякому множеству в евклидовом пространстве — каким бы «патологическим» оно ни выглядело — некое вещественное число, которое и с интуитивной, и с формальной точки зрения имеет полное право называться размерностью этого множества. Более неформальным из двух является определение топологической размерности по Брауэру, Лебегу, Менгеру и Урысону. Эта размерность описана в соответствующем разделе главы 41. Обозначим ее через D>T Определение второй размерности было сформулировано Хаусдорфом в [203] и приведено в окончательный вид Безиковичем. Ее описание можно найти в главе 39, а обозначать ее мы будем через D.
< В евклидовом пространстве R>E величины размерностей D>T и D заключены в промежутке от 0 до E. Однако на этом их сходство заканчивается. Размерность D>T всегда является целым числом, в то время как для размерности D это вовсе не обязательно. Эти две размерности не обязательно должны совпадать, они должны лишь удовлетворять неравенству Спилрайна (см. [231], глава 4)
D≤D>T
В случае евклидовых множеств D=D>T. Однако почти для всех множеств в этой книге D>D>T. Такие множества необходимо было как-то называть, поэтому я придумал термин фрактал, определив его следующим образом:
< Фракталом называется множество, размерность Хаусдор- фа-Безиковича для которого строго больше его топологической размерности.
< Любое множество с нецелым значением D является фракталом. Например, исходное канторово множество представляет собой фрактал, поскольку, как мы увидим в главе 8, его размерность
D=ln2/ln3≈0,6309>0, при D>T=0.
Канторово множество в пространстве R>E можно обобщить так, чтобы D>T=0, a D принимала бы любые желаемые значения в промежутке от 0 до E (включительно).
< Фракталом является и исходная кривая Коха, поскольку, как будет показано в главе 6, ее размерность
D=ln4/ln3≈1,2618>1, при D>T=1.
< Фрактал может иметь и целочисленную размерность. Например, в главе 25 показано, что траектория броуновского движения представляет собой фрактал, так как ее размерность
D=2, при D>T=1.
< Тот поразительный факт, что размерность D не должна непременно быть целым числом, заслуживает некоторого терминологического отступления. Если понимать термин «дробь»1 в широком смысле, т.е. как синоним термина «нецелое вещественное число», то некоторые из вышеперечисленных значений размерности