Фрактальная геометрия природы (Мандельброт) - страница 17

Топология, которую раньше называли геометрией местоположений или analysis situs1 (греческое слово переводится как «место» или «положение»), полагает, что все горшки с двумя ручками имеют одинаковую форму, так как если бы они обладали неограниченной гибкостью и сжимаемостью, то можно было бы из одного горшка вылепить любой другой, причем непрерывным образом, не делая никаких новых отверстий и не закрывая старых. Топология также учит, что форма береговой линии любого острова идентична форме береговой линии любого другого острова, поскольку все такие линии топологически идентичны дружности. Топологическая размерность береговой линии равна топо- логической размерности окружности, и обе они равны 1. Если добавить острову несколько не соприкасающихся с ним «спутников», то совокупная береговая линия получившегося архипелага будет топологически идентична совокупности нескольких окружностей. Таким образом, топология не видит разницы между различными береговыми линиями.

В главе 5 показано, что различные береговые линии имеют, как правило, различные фрактальные размерности. Различия между фрактальными размерностями обусловлены различиями между нетопологическими аспектами формы, которые я предлагаю назвать фрактальными.

Большинство действительно важных и интересных задач сложным образом сочетают в себе фрактальный и топологический аспекты формы.

Заметим, что в топологии определения собственно поля и размерности D>T развивались параллельно, а понятие фрактальной размерности D появилось на полвека раньше настоящего исследования в области фрактальных форм.

Кстати, из-за того, что некий класс топологических пространств носит имя Феликса Хаусдорфа, широко используемый для обозначения размерности D термин «хаусдорфова размерность» может быть воспринят как сокращение от «размерности хаусдорфова пространства», создавая тем самым впечатление, что D является топологическим понятием — это абсолютно не так. Вот вам еще одна причина, почему я предпочитаю термин фрактальная размерность.

ЭФФЕКТИВНАЯ РАЗМЕРНОСТЬ

Помимо математических идей, лежащих в основе размерностей D>T и D, я часто прибегаю к помощи эффективной размерности — понятия, которому не следует давать точного определения. Это мощное интуитивное понятие представляет собой возврат к древнегреческой пифагорейской геометрии. Новизна заключается в том, что в настоящем эссе значение эффективной размерности может быть дробным.

Эффективная размерность выражает соотношение между математическими множествами и естественными объектами. Строго говоря, все физические объекты — такие, например, как вуаль, нить или маленький шарик — должны быть представлены трехмерными телами. Однако физики предпочитают считать, что вуаль имеет размерность 2, а размерности нити и шарика равны соответственно 1 и 0 (при условии, разумеется, что и вуаль, и нить, и шарик достаточно малы). Например, для описания нити относящиеся к множествам с размерностями 1 или 3 теории должны быть соответствующим образом скорректированы с помощью поправочных членов. После этого строится более точная геометричеcкая модель, требующая меньших поправок. Если повезет, такая модель оказывается верной даже без учета поправок. Иными словами, эффективная размерность неизбежно опирается на субъективный фундамент; она обусловлена приближением и, как следствие, степенью разрешения.