Такой неформальный подход призван помочь читателю избежать тех частей текста, которые лежат вне области его интересов или за пределами его компетенции. По всей книге разбросано множество «легких» в математическом смысле мест, особенно ближе к концу. Листайте книгу, где-то останавливаясь, что-то пропуская — по крайней мере, при первом и втором прочтении.
В этом эссе сводятся вместе аналитические методы различных наук с целью создания нового философско-математического синтеза. Таким образом, оно может рассматриваться и как сборник прецедентов, и как манифест. Кроме того, оно открывает изумленному взгляду совершенно новый мир пластичной красоты.
СБОРНИК НАУЧНЫХ ПРЕЦЕДЕНТОВ
Термином «сборник прецедентов» юристы называют собрание реальных, имевших место в юридической практике случаев, объединенных общей темой. В науке соответствующего термина нет, поэтому я предлагаю его позаимствовать. Наиболее важные случаи требуют многократного рассмотрения, однако и менее значительные также заслуживают
внимания; на интенсивность обсуждения нередко влияет и наличие похожих «прецедентов».
Рассмотрение одного из прецедентов касается широко известного приложения широко известного математического аппарата к одной широко известной задаче природы; я имею в виду винерову геометрическую модель физического броуновского движения. К нашему удивлению, винеровский процесс нигде больше непосредственно не применим, и это наводит на мысль, что среди феноменов высокой степени сложности, с которыми мы имеем дело, броуновское движение представляет собой особый случай, исключительно простой и неструктурированный. Тем не менее, я включил броуновское движение в настоящую книгу, поскольку многие весьма полезные фракталы представляют собой не что иное, как тщательные его модификации.
Другие исследования затрагивают, главным образом, мою собственную работу, ее дофрактальные предпосылки и дальнейшее развитие, которым она обязана трудам тех ученых, которые откликнулись на предшествующие данному эссе 1975 и 1977 гг. Некоторые «прецеденты» относятся к высокозрелищным горным ландшафтам и тому подобным вещам, тем самым выполняя, наконец, обещание, заложенное давным-давно в слово «геометрия». Другие имеют дело с субмикроскопическими ансамблями частиц — важнейшим объектом изучения для современной физики.
Основная тема некоторых примеров носит несколько эзотерический характер. В других примерах тема близка и знакома, однако ее геометрические аспекты не были до сих пор адекватно рассмотрены. В этой связи вспоминается замечание Пуанкаре о том, что есть вопросы, которыми задаемся мы, и вопросы, которые задают себя сами. А вопрос, который уже давно и безответно себя задает, считается детским.