То есть надо так разместить центр давления, чтобы он был сзади от центра масс, причем не слишком близко, чтобы был запас устойчивости, иначе придется тратить много энергии на выравнивание ракеты. Но и слишком далеко размещать тоже не надо, иначе много энергии придется тратить уже на ее повороты. И вот, наши конструктора после каждого изменения в конструкции ракет пересчитывали положение центров давления, и если они не устраивали, то меняли габариты отдельных элементов. Собственно, ракету разбивали на отдельные элементы — носовую часть, цилиндрическую часть с блоком управления и ракетным двигателем, хвостовую часть, рулевое оперение и крылья — и для каждой рассчитывали центр давления данной части, а затем, исходя из расстояний между ними — общий центр давления всей ракеты. И затем сравнивали его с положением центра масс. Причем обе величины менялись с течением времени полета — от давления воздуха и скорости полета менялось положение центр давления, а центр масс менял свое положение по мере выгорания топлива — он сдвигался вперед, увеличивая устойчивость и уменьшая маневренность. Соответственно, конструктора разбивали возможные режимы полета на сетку значений скорость-давление воздуха — и для каждого узла рассчитывали положение центров. Для "вертикалок" было проще — они летели только вверх, поэтому у них хотя бы давление менялось только в одну сторону. У новых же ракет, что мы впервые применили в начале августа сорок третьего, полет мог происходить и по горизонтали. Соответственно, набор сочетаний давление-скорость-масса увеличивалась многократно. И без ЭВМ расчеты заняли бы очень много времени. А так, за полчаса просчитав все контрольные точки, ЭВМ распечатывала несколько страниц с цифровыми колонками, и конструктора погружались в их изучение, изредка выдавая "Ага! Я же говорил!" или "Зар-р-раза! Опять ушла в минус!". И по результатам расчетов делали перекомпоновку — удлиняли или укорачивали нос, чтобы сдвинуть центр давления назад или вперед, удлиняли или укорачивали корпус, чтобы сдвинуть центр вперед или назад, меняли размах или форму крыльев — последним пользовались чаще всего, так как корпус нельзя было делать слишком коротким, иначе не поместится топливо и аппаратура, его нельзя было делать и слишком длинным, чтобы он мог выдерживать перегрузки при маневрах — ограничений хватало. Мы поэтому-то и оставили толщину стенок в два миллиметра и дальше не снижали — иначе без стрингеров корпус получался очень нежестким и сминался даже при небольших маневрах — это мы выяснили даже без полетов, на стендах. А вот что проявилось только в полетах, так это возникновение резонанса между рулями и корпусом — при утоньшении стенок собственная частота корпуса уменьшалась, а при уменьшении устойчивости возрастала частота колебаний рулевого оперения, так как приходилось чаще подправлять начинавшую сходить с курса ракету. И в какой-то не очень прекрасный момент эти частоты стали близки. Первая ракета просто отказала и грохнулась на землю. Оказалось, в ней разрушились три лампы — аппаратура не была разбита вдребезги только потому, что парашютная система управлялась в том числе и набегающим потоком, механически — прекратился поток — выпускай парашют. Но причина этого была непонятна. И пришлось сделать более сотни запусков, прежде чем нашли виновника — ведь частоты совпадали далеко не всегда — в какие-то дни воздух был, например, спокоен, и требовалось меньше подруливаний — ракета идет нормально. В какие-то дни, наоборот, возмущений воздуха слишком много, и требуются постоянные подруливания, но, видимо, рулевое управление быстро проскакивало резонансные частоты — и ракета снова летела нормально! На этом резонансе мы потеряли полтора месяца — как раз октябрь сорок второго и половину ноября.