Онтогенез. От клетки до человека (Дейвис) - страница 11

Сложные организмы справляются с этой проблемой благодаря компартментализации – принципу разделения процессов в пространстве. Тело состоит из органов, имеющих определенные функции, органы – из специализированных тканей, а ткани – из разных типов клеток. Однако внутри клетки большая часть молекул постоянно находится в движении, из-за чего трудно достичь одновременного выполнения многих операций. Компартментализация существует и на уровне клетки. В главе 8, посвященной перемещению клеток эмбриона и изменению их взаимного расположения, мы обсудим, как разные части клетки могут выполнять несколько разные функции. Однако «многозадачность» клетки имеет свои пределы. Поэтому мы будем считать клетку базовой единицей, которая одновременно выполняет лишь одно-два дела. Именно поэтому многообразие типов клеток является необходимым шагом к созданию сложного организма.

Механизмы, за счет которых одна клетка превращается в две, а потом и во множество клеток, не только принципиально важны для эмбрионального развития, но и ярко демонстрируют возможности самоорганизации. Простые маленькие молекулы могут самоорганизовываться в крайне сложные структуры, имеющие гораздо больший пространственный масштаб, чем сами молекулы, причем без какого бы то ни было предварительного плана. Это краеугольный камень, лежащий в основе понимания развития эмбриона. Поэтому в этой главе мы подробно остановимся на механизмах деления клетки, а в дальнейшем будем принимать их как данность.

Оплодотворенная яйцеклетка, с которой начинается развитие человека, необычно велика. Она достигает десятой доли миллиметра в диаметре и видна даже невооруженным глазом. Большинство клеток организма намного меньше: примерно сотая доля миллиметра в диаметре и тысячная доля объема яйцеклетки. Это означает, что оплодотворенная яйцеклетка может превратиться в многоклеточный эмбрион просто поделившись на две, затем на четыре, на восемь и так далее, без перерывов на рост. Такой тип деления клетки – дробление – очень удобен для эмбриона, так как позволяет отложить проблему питания, обеспечивающего энергию для роста, на потом, а именно на этап, когда эмбрион уже станет многоклеточным и сможет выделить для переработки пищи специализированные части тела.

Если расти не нужно, процесс деления сводится к распределению молекул (например, белков) поровну между дочерними клетками. Суть деления при неизменном объеме заключается в сохранении концентрации белков и питательных веществ. Ярким исключением из этого правила является молекула ДНК: в исходной клетке сорок шесть хромосом (двадцать три от матери и двадцать три от отца), и каждая новая клетка должна содержать такое же их число. Поэтому хромосомы должны копироваться (реплицироваться) перед каждым делением клетки. Более того, должны существовать специальные системы, гарантирующие «честное» распределение реплицированных хромосом по дочерним клеткам – каждая из них должна получить не сорок шесть любых хромосом, а по одной копии каждой хромосомы от отца и по одной – от матери. Система, которая обеспечивает эту нелегкую задачу, является одной из основных систем клеток животных и растений и существует уже около 2,5 млрд лет. И всего пару миллионов лет назад появились существа, которые в принципе способны понять, как она работает.