Туристы, к примеру, знают, что, если одна из троп утоптана сильнее других, это означает, что по ней проходило множество туристов и что, по всей видимости, это лучшая тропа в данной местности. Верный путь становится лучше всякий раз, когда по нему проходят. Точно так же нейронная связь, отвечающая за определенное поведение, усиливается всякий раз, когда ею пользуются.
Это важно потому, что обучающиеся машины станут для нас ключом к освоению космоса. Роботы в космосе будут постоянно сталкиваться с новыми и вечно меняющимися опасностями. Они встретятся с ситуациями, которых ученые сегодня не могут себе даже вообразить. Робот, запрограммированный только на ограниченное число конкретных отказов и ситуаций, в космосе будет бесполезен, потому что Его Величество Случай непременно обрушит на него по-настоящему непредвиденную ситуацию. К примеру, мышь никак не может быть генетически запрограммирована на все случаи жизни, потому что общее число ситуаций, с которыми она может столкнуться, бесконечно, тогда как генов у нее конечное число.
Предположим, метеоритный дождь, обрушившийся из космоса на марсианскую базу, повредил нескольких зданий и сооружений. Роботы, использующие нейронные сети, могут обучаться, каждый раз справляясь все лучше с подобными неожиданными ситуациями. Но традиционные роботы, сконструированные в соответствии с подходом «сверху вниз», в непредвиденной сложной ситуации будут попросту парализованы.
Многие из этих идей вошли в исследование Родни Брукса, бывшего директора известной Лаборатории ИИ в Массачусетском технологическом институте. Во время нашей с ним беседы он с искренним изумлением говорил о том, что комары с их микроскопическим мозгом, насчитывающим около 100 000 нейронов, могут без труда летать в трех измерениях, а для управления простым шагающим роботом требуются весьма и весьма хитроумные программы — и все равно он может споткнуться в любой момент. Брукс заложил основы нового подхода, начал работать с «жукоботами» и «инсектоидами» — роботами, которые учатся передвигаться как насекомые, на шести ногах. Поначалу они часто падают, но с каждой попыткой двигаются все лучше и лучше и постепенно научаются координировать движения ног, как это делают настоящие насекомые.
Процесс размещения нейронных сетей в компьютере стал известен как глубокое обучение (Deep Learning). В дальнейшем эта технология, возможно, произведет революцию во множестве отраслей. Не исключено, что в будущем, если вы захотите поговорить с врачом или юристом, вам достаточно будет заговорить с умной стеной или, скажем, с наручными часами и попросить связать вас с роботом-врачом или роботом-юристом, то есть запустить программы, которые смогут прошерстить для вас интернет и выдать разумный медицинский или юридический совет. Эти программы будут обучаться при повторных вопросах и с каждым разом все лучше и лучше отзываться именно на ваши нужды — а может быть, даже предвидеть их.