Почему мы существуем? Величайшая из когда-либо рассказанных историй (Краусс) - страница 66

Это описание звучит настолько дико, что неминуемо должно вызывать недоверие с вашей стороны. В конце концов, если мы не можем непосредственно измерить эти виртуальные частицы, то как мы можем утверждать, что они существуют?

Ответ на этот вопрос заключается в том, что, хотя мы не в состоянии регистрировать воздействие виртуальных пар частица-античастица непосредственно, мы можем опосредованно сделать вывод об их присутствии, поскольку они косвенно изменяют свойства систем, которые мы можем наблюдать.

Теория, в которой такие виртуальные частицы присутствуют наряду с электромагнитными взаимодействиями электронов и позитронов, называется квантовой электродинамикой и представляет собой самую лучшую из всех научных теорий, имеющихся в нашем распоряжении. Предсказания, основанные на этой теории, сравниваются с данными наблюдений и совпадают с ними с точностью до десяти и более значащих цифр. Ни в какой другой области физической науки не достигается такого уровня точности соответствия наблюдаемых данных и предсказаний, основанных на непосредственном применении первичных принципов на самых фундаментальных масштабах, которые мы в состоянии описать.

Но такая согласованность между теорией и наблюдениями возможна лишь в том случае, если при расчетах учитываются эффекты, связанные с виртуальными частицами. В действительности сам феномен существования виртуальных частиц подразумевает, что в квантовой теории взаимодействие между частицами всегда передается путем обмена виртуальными частицами, тем способом, о котором я сейчас расскажу.

В квантовой электродинамике электромагнитные взаимодействия осуществляются путем поглощения или испускания квантов электромагнитной энергии, то есть фотонов. Следуя Фейнману, мы схематически изобразим такое взаимодействие в виде электрона, который испускает волнистый «виртуальный» фотон (g) и изменяет направление своего движения.



Тогда электрическое взаимодействие между двумя электронами можно изобразить следующим образом.



В данном случае электроны взаимодействуют друг с другом, обмениваясь виртуальным фотоном, который спонтанно испускается электроном слева и поглощается другим электроном через такое короткое время, что наблюдать этот фотон невозможно. После такого взаимодействия эти два электрона отталкиваются друг от друга и разлетаются.

Это объясняет также, почему электромагнетизм является дальнодействующей силой. Согласно принципу неопределенности Гейзенберга, если мы измеряем состояние системы на протяжении некоторого отрезка времени, то в измеренной энергии этой системы присутствует соответствующая неопределенность. Причем чем больше этот отрезок времени, тем меньше связанная с ним неопределенность энергии. У фотона нет массы, и поэтому, в соответствии с эйнштейновским соотношением для массы и энергии, виртуальный безмассовый фотон при рождении может нести сколь угодно малое количество энергии. Это означает, что он может существовать и двигаться сколь угодно долгое время – и, соответственно, преодолеть сколь угодно большое расстояние – до своего поглощения; при этом он по-прежнему будет находиться под защитой принципа неопределенности, поскольку переносимая им энергия так мала, что никакого видимого нарушения закона сохранения энергии не происходит. Таким образом, электрон на Земле способен испустить виртуальный фотон, который долетит до альфы Центавра на расстоянии четырех световых лет и там окажет воздействие на электрон, который его поглотит. Однако если бы фотон был не безмассовым, а обладал массой покоя