Почему мы существуем? Величайшая из когда-либо рассказанных историй (Краусс) - страница 79

При бета-распаде нейтрон расщепляется на протон и электрон, а это, как я объясню чуть позже, было бы невозможно, если бы нейтрон не был чуть тяжелее протона. В нейтронном распаде удивительно не то, что он имеет место, но то, что происходит он так медленно. Обычно распад нестабильных элементарных частиц занимает миллионные или миллиардные доли секунды. Изолированные нейтроны живут в среднем более десяти минут.

Одной из основных причин того, что нейтроны живут так долго, является то, что масса нейтрона лишь слегка превышает сумму масс протона и электрона. Остающейся энергии, соответствующей массе покоя, едва хватает на то, чтобы позволить нейтрону распасться на эти частицы без нарушения закона сохранения энергии. (Еще одна причина состоит в том, что нейтрон распадается не просто на протон и электрон. Он распадается на три частицы… оставайтесь с нами!)

Хотя десять минут в атомных масштабах могут показаться вечностью, это все же довольно короткий промежуток времени по сравнению с продолжительностью жизни человека и атомов на Земле. Возвращаясь к загадке, которую я упоминал в начале этой главы, задам вопрос. Как можем мы состоять в основном из нейтронов, если они распадаются еще до первой рекламной паузы в тридцатиминутном телешоу?

Ответ опять же заключается в необычайной близости масс нейтрона и протона. Свободный нейтрон действительно распадается за десять минут или около того. Но рассмотрим нейтрон, связанный внутри атомного ядра. Связанность его означает, что для выбивания нейтрона из ядра необходимо затратить некоторое количество энергии. Но это означает также, что первоначально этот нейтрон, попадая в ядро, теряет энергию. Однако Эйнштейн учит нас, что полная энергия массивной частицы пропорциональна ее массе и определяется уравнением E = mc>2. Это означает, что если нейтрон при связывании в ядре теряет энергию, то его масса уменьшается. Но поскольку его масса в изолированном состоянии лишь чуть-чуть превышает суммарную массу протона и электрона, то после потери части массы он уже не обладает достаточной энергией для распада на протон и электрон. Чтобы превратиться в протон, ему пришлось бы либо высвободить достаточно энергии, чтобы, помимо всего прочего, выбросить этот протон из ядра (на это его, учитывая стандартные энергии ядерных связей, не хватило бы), либо высвободить достаточно энергии, чтобы дать новому протону возможность остаться в новом стабильном ядре. Это ядро стало бы относиться к другому элементу, в ядре которого положительных зарядов на один больше, а увеличение положительного заряда ядра, как правило, тоже требует больше энергии, чем то небольшое количество, которое высвобождается при распаде нейтрона. В результате нейтроны в большинстве атомных ядер, содержащих нейтроны, остаются стабильными.