Если планеты распределены в плоскости эклиптики (вокруг Солнца) «равномерно», то центр тяжести Солнца почти совпадает с центром тяжести всей Солнечной системы. «Почти» — потому, что добиться полной равномерности нельзя. Если же планеты с большими массами (планеты-гиганты) выстроятся в один ряд по одну сторону от Солнца, то центр тяжести Солнца сместится относительно центра тяжести всей Солнечной системы. Величина этого смещения может достигать 2,19 радиуса Солнца. Это существенно изменит характер движения самого Солнца. Кроме того, что оно вращается вокруг своей оси, оно обязано совершать обороты вокруг общего центра масс всей системы, в которую оно входит. Это дополнительное движение служит толчком к возникновению различного рода неустойчивостей в солнечной плазме, что в конечном счете приведет к усилению солнечной активности. Ясно, что здесь важна не сама скорость, а изменение ее во времени, то есть периоды наибольшего замедления или ускорения (рис. 10).
>Рис. 10. Схема изменения центра тяжести Солнечной системы (ЦТСС) в зависимости от геометрического положения планет
Можно сделать такой простой чисто иллюстративный расчет. Будем считать, что имеются только две планеты, движущиеся по своим орбитам с равномерными, но разными скоростями. Далее рассчитаем те моменты, когда они «соединятся», то есть выйдут на одно и то же направление, проходящее через Солнце. Так можно рассчитать ситуацию (время соединения и относительную угловую скорость одной планеты относительно другой) для различных пар планет, например, Сатурн — Юпитер, Сатурн — Уран, Нептун — Уран, Нептун — Плутон. Тогда получим интервалы времени, через которые происходит соединение указанных пар планет, соответственно равные 19, 858, 45, 365, 171, 428 и 481, 233 гг. Указанные четыре периода еще не являются периодами солнечной активности. Из приведенного выше периода, равного 171,4 г., можно определить продолжительность солнечного цикла в 86 лет. Это вековой цикл. Для того, чтобы получить циклы продолжительностью в 11 и 22 гг., надо рассчитать соединения Юпитера, Сатурна и Урана, а также учесть приливные воздействия на солнечную атмосферу планет земной группы. С приливами все мы хорошо знакомы на примере морских приливов. Может не все знают, что имеются также атмосферные приливы. Вся они возникают под действием сил притяжения Солнца и Луны. Естественно ожидать, что и Земля (а также другие планеты) будут оказывать приливное действие на вещество Солнца. Но поскольку масса Земли небольшая, то и результат будет не столь заметный, как при действии солнечных приливов на Земле. Приливы, вызываемые планетами, вызывают колебания фотосферы Солнца всего на 1 см по высоте. Конечно, это мало для того, чтобы ждать от этих приливов заметных последствий. Но приливная сила может служить в качестве спускового механизма. Для этого ей не обязательно надо быть большой. Необходимо также иметь в виду, что чем выше над фотосферой, тем размах приливных колебаний солнечного газа становится больше. В настоящее время специалисты сходится на том, что приливные колебания солнечного газа, вызываемые планетами, должны быть учтены при описании солнечной активности и физики Солнца вообще.