100 великих научных открытий (Авторов) - страница 127

Хоть у Бройля и не получилось экспериментально доказать свои умозаключения, он все равно перевернул сознание коллег и побудил их взглянуть на материю под другим углом. В итоге в 1925 г. немецкий физик Вернер Гейзенберг (1901–1976) заложил основы новой науки — квантовой механики, выстроив в математических таблицах (матрицах) временные изменения поведения каждой частицы. Под поведением подразумевались скачки квантовой системы (молекулы, атома, электрона…) с одного энергетического уровня на другой (с высшего на низший или наоборот), с выделением либо поглощением энергии. Преимущество таких матриц было в одном: их данные совпадали с результатами экспериментов, — однако в них не учитывалось ни местоположение частиц, ни траектория, ни скорость. Гейзенберг считал, что вводить эти параметры не имеет смысла, поскольку измерить их опытным путем в мире элементарных частиц невозможно.

Другим ученым, который поддержал идею Бройля, стал австриец Эрвин Шрёдингер (1887–1961). На научной конференции в Цюрихе в 1926 г. он осмелился заявить, будто поведение элементарных частиц скорее напоминает распространение волн, нежели движение твердых тел. На это один из участников конференции — очень уважаемый профессор — возмущенно воскликнул: «Шрёдингер, ну что за ерунда?! Всем же известно, что волны описываются волновыми уравнениями…» Приняв данную реплику за вызов, ученый поставил себе задачу написать уравнение для вероятностной волны — и легко сделал это с помощью классической формулы обычной волновой функции, подставив туда возможные координаты, массу, потенциальную и постоянную энергию частицы, ну и конечно, планковский квант движения. Впоследствии матрица Гейзенберга и уравнение Шрёдингера стали инструментами, позволяющими описывать все квантовые явления.

Уже через год американские физики Клинтон Дэвиссон (1881–1958) и Лестер Джермер (1896–1971) поставили опыт, подтвердивший теорию Бройля. Ученые направили на кристалл никеля электронный поток, и тот, пройдя сквозь кристаллическую решетку, отобразился на экране черно-белыми концентрическими кругами с ярким пятном посередине. То есть показал такую же дифракционную картину, какую дают коротковолновые электромагнитные икс-лучи, проходя сквозь кристалл, да и просто обычный пучок света, прошедший через дифракционную решетку — пластину с узкими продольными щелями. Измерив радиусы самых ярких и широких кругов, исследователи смогли определить длину волны электронов — и убедились, что тот же результат получается в уравнении Бройля.

Через год аналогичный опыт поставил сын британского физика Джозефа Томсона, открывшего электрон, — Джордж Паджет Томсон (1892–1975). Правда, вместо никеля он использовал тонкую фольгу, состоящую из крошечных кристалликов золота, однако результат получил тот самый, какого добились его американские коллеги.