Маленькая книга о черных дырах (Габсер, Преториус) - страница 13

, собственной длиной. Длина шеста, измеренная в системе Б, всегда меньше, и мы будем ее называть сокращенной длиной. Замедление времени и сокращение длины тесно связаны, как можно видеть из следующего примера. Когда Алиса бежит по гаревой дорожке к планке, в ее собственной системе отсчета у нее уходит на это вдвое меньше времени, чем то, которое Боб и Билл могли бы измерить способом, о котором мы уже рассказывали при описании поездки Алисы в Нью-Йорк. Получается, что при рекордной скорости Алисы в 87 % скорости света время замедляется вдвое. Во столько же раз сокращается и длина: наблюдатели в системе А говорят, что длина шеста 6 метров, а в системе Б он всего лишь трехметровый. В общем, время замедляется, а длина сокращается всегда в одинаковое количество раз: этот множитель иногда называется множителем Лоренца, или Лоренц-фактором.

Наше обсуждение специальной теории относительности, которое сосредоточилось на геометрии пространства-времени, пока что никак не связано со знаменитым уравнением E = mc². Попробуем найти такую связь, рассмотрев частный случай вывода этого уравнения, в котором все главные шаги можно будет проиллюстрировать геометрически. Этот случай мы называем частным, потому что он требует приближений и формул, которые мы не можем сейчас строго обосновать или вывести.

Сначала давайте сформулируем на языке уравнений, что такое масса. Лучше всего сделать это с помощью уравнения p = mv, где p – импульс, или количество движения, а v – скорость медленно движущегося массивного тела, масса которого равна m. Соотношение p = mv прямо вытекает из механики Ньютона, и мы можем спокойно им пользоваться, пока v гораздо меньше скорости света. Следующий шаг – найти какое-то выражение для энергии. Здесь нам придется принять без доказательства еще один результат теории электромагнетизма: количество движения светового импульса p связано с энергией света E уравнением. Как мы уже выяснили, световые импульсы отличаются тем, что всегда движутся с одной и той же скоростью, независимо от системы отсчета. Это совсем не похоже на поведение массивных объектов. В данной системе отсчета массивные объекты могут либо стоять на месте, либо двигаться с некоторой скоростью v, которая, в соответствии со специальной теорией относительности, всегда меньше скорости света.

Пусть теперь мы знаем количество движения массивного объекта p = mv и светового импульса. Но было бы неверно сказать, что это одна и та же величина: ведь массивный объект не то же самое, что световой импульс! Вместо того чтобы приравнять эти значения друг другу, надо подумать, как создать массивный объект из световых импульсов, – тогда мы сможем использовать наши уравнения количества движения для вывода соотношения