Маленькая книга о черных дырах (Габсер, Преториус) - страница 99

>N раз.

Бекенштейн сформулировал необыкновенно сильное утверждение: черные дыры несут в себе больше энтропии, чем любая другая форма вещества, способная занять тот же объем пространства-времени. Более простая версия этого утверждения выглядит так: для того, чтобы обычное вещество, уложенное в конечную область пространства-времени, обладало большой энтропией, этого вещества должно быть очень много – настолько, что дело начинает пахнуть гравитационным коллапсом. Прежде чем энтропия обычного вещества превысит теоретическую энтропию черной дыры, это вещество сколлапсирует в черную дыру. В этом смысле коллапс в черную дыру представляет собой самое неупорядоченное и необратимое событие из всех возможных.

Микроскопическое обоснование закона площадей предлагает – при некоторых ограниченных условиях – теория струн, но в целом этот закон из фундаментальных физических принципов не выводится. Однако Тед Якобсон утверждает, что если мы будем исходить из термодинамики черных дыр, в частности из закона площадей, объединив этот подход с некоторыми основными положениями дифференциальной геометрии, то придем к уравнениям Эйнштейна – основе общей теории относительности. Более того, известно, что если модифицировать уравнения Эйнштейна с сохранением их внутренней симметрии, закон площадей изменится, а вычисления Хокинга по сути останутся теми же. Так что выходит, что энтропия черной дыры – хороший инструмент для описания динамики пространства-времени. И все-таки, что же представляет собой энтропия черной дыры?

Недавно Хуан Малдасена и Леонард Сасскинд внесли предложение, которое должно более тесно увязать энтропию запутанности с энтропией черной дыры. Вот в чем это предложение состоит. Вспомним парадокс ЭПР, где два спина были вначале запутаны, а затем разделены, и парадоксальным образом ни один из них не имел определенного квантового состояния сам по себе, хотя оба вместе его имели. Каждый спин является кубитом, и каждый сам по себе имеет равное кубиту количество энтропии. Не могли бы мы предположить, что на некотором микроскопическом уровне каждый из них является черной дырой и что их запутанность геометрически проявляется в виде кротовой норы между ними? Тут есть два очевидных возражения. Во-первых, черная дыра только с одним кубитом энтропии так мала, что геометрические соображения могут для нее не иметь никакого значения. Во-вторых, как уже говорилось в главе 3, кротовые норы непроходимы. Чтобы понять, как можно обойти эти возражения, давайте сначала представим себе системы большего размера с большим числом возможных квантовых состояний и, следовательно, с большими значениями энтропии. Но при этом будем настаивать на том, что две из этих более крупных систем, которыми распоряжаются, как обычно, наши Алиса и Боб, идеально запутаны, так что их объединенное квантовое состояние точно определено. Выше мы в качестве примеров систем больших размеров брали бруски чистого магния, но теперь мы хотим использовать более сложное состояние вещества, которое через некоторое время должно сколлапсировать в черную дыру. Короче говоря, Алиса и Боб оказываются вдалеке друг от друга, каждый по отдельности в окрестности своей черной дыры, и по крайней мере значительная часть энтропии каждой из этих черных дыр обязана своим существованием квантово-механической запутанности между этими двумя системами. Затем мы предполагаем, что эти черные дыры соединены кротовой норой, и она является геометрическим проявлением их запутанности.