Примени математику (Гашков, Сергеев) - страница 28

4.4. Последовательные числа 24, 25, 26, 27, 28 образуют искомую пятерку. Докажем, что для любого натурального значения n найдутся n идущих подряд составных чисел. В самом деле, каждое из n чисел


является составным, поскольку число


делится на 2, 3, ..., n и n+1, откуда первое число (n+1)!+2 делится на 2, второе число (n+1)!+3 делится на 3,..., (n-1)-е число (n+1)!+n делится на n, а n-е число (n+1)!+(n+1) делится на n+1.

4.5. Докажем, что любое составное число n имеет простой делитель, не превосходящий Возьмем наименьшее простое число р, участвующее в разложении числа n на простые множители. Тогда число n представляется в виде произведения pq, причем p≤q, поэтому p>2≤pq = n и

Из доказанного утверждения следует, что если число n не делится ни на одно простое число, не превосходящее , то оно является простым.

4.6.

а) 315 = 3>2*5*7;

б) 127 - простое число, так как оно не делится ни на одно из простых чисел 2, 3, 5, 7, 11, не превосходящих

в) 1001 = 7*11*13;

г) 899 = 30>2-1>2 = 29*31;

д) 919 - простое число, так как оно не делится ни на одно из простых чисел, не превосходящих

4.7. В результате описанной в условии задачи процедуры в ряду чисел от 1 до л не будет зачеркнуто ни одно простое число, так как на каждом шагу зачеркиваются только числа, кратные каким-то другим числам. Число k (большее 1) из этого ряда останется незачеркнутым только в том случае, если оно не делится ни на одно из незачеркнутых чисел, не превосходящих

, среди которых содержатся все простые числа, не превосходящие
Согласно задаче 4.5, таким числом к может быть только простое число. Таким образом, в ряду останутся незачеркнутыми все простые числа и только они.

4.8. Зачеркнув в ряду чисел от 1 до 100 сначала число 1, затем числа, кратные 2, кроме числа 2, затем числа, кратные 3, кроме числа 3, затем числа, кратные 5, кроме числа 5, и, наконец, числа, кратные 7, кроме числа 7, мы получим следующий набор незачеркнутых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. На этом следует остановиться, поскольку следующее за числом 7 незачеркнутое число 11 уже превосходит

4.9. Так как

то наименьший простой делитель любого из составных чисел, меньших 150, не превосходит 11 (см. задачу 4.5). Вычеркнем из ряда чисел от 120 до 150 все числа, делящиеся на 2, 3 или 5, тогда останутся числа

121, 127, 131, 133, 137, 139, 143, 149. Учитывая, что число 121 делится на 11, а число 140 - на 7, находим среди оставшихся чисел все числа, кратные 11 или 7. Вычеркнув их, мы получаем ответ: