Чтобы несколько упростить ситуацию, представим, что процесс извержения вещества сверхновой происходит за одно мгновение. Мы бы увидели тонкую газовую оболочку, расходящуюся от звезды облаком, диаметр которого со временем увеличивается. В той оболочке заключена почти вся масса исходной звезды (наружные слои, сброшенные взрывом, могут в несколько раз перевешивать массу ядра). По мере расширения оболочка увеличивается в объеме, поэтому количество газа в отдельно взятой области уменьшается — это очень похоже на свет, испускаемый электрической лампочкой; чем дальше вы от нее, тем более рассеянным и тусклым он становится.
Осколки от взрыва сверхновой также рассеиваются. Если вы находитесь на планете поблизости от взрыва, на вас обрушится больше вещества, чем когда вы находитесь дальше. В этом случае количество сталкивающегося с вами вещества уменьшается пропорционально квадрату расстояния: если расстояние удвоить, до вас долетит лишь четверть вещества. Но какое расстояние будет достаточным?
Чтобы рассмотреть самый плохой вариант, предположим, что сверхновая находится от нас на расстоянии в 10 световых лет, что маловероятно. Это означает, что от нее до Земли будет около 95 трлн км[23]. Давайте также предположим, что суммарная извергнутая масса в 20 раз больше массы Солнца, что довольно характерно для рядовой сверхновой. В этом случае по Земле попало бы примерно 40 млн т вещества.
Ух ты! Берегись!
Но сколько это на самом деле?
Кажется, что очень много, но в действительности нет; примерно такую массу имел бы небольшой холм высотой около 400 м. Если бы такая глыба свалилась на нас целиком, результат был бы плачевным — в главе 1 это четко объясняется, — но помните, что вся эта масса была бы рассеяна по всей поверхности Земли. Это гораздо меньше, чем 300 г/м>2: такая рассеянная масса — как одна капля дождя у вас во дворе.
И мы знаем, что это событие не вызвало бы массового вымирания, так как мы уже переживали столкновения с астероидами таких размеров и даже больше. Мы, возможно, заметили бы, что солнечный свет стал немного тусклее, но обошлись бы без долгосрочных последствий.
У нас есть реальная ситуация — взрыв звезды в 1054 г., после которого образовалась Крабовидная туманность. Сколько осколков долетит до Земли с расстояния 6500 световых лет? Оказывается, примерно 100 т.[24] Повторюсь, несмотря на то что 100 т кажется огромной массой, каждый день на Землю падает 20–40 т метеоритного вещества. Осколки из Крабовидной туманности — это просто небольшая добавка к нашему ежедневному рациону. Но в любом случае вам не стоит беспокоиться: чтобы добраться до нас на обычных для таких обломков скоростях от 1/20 до 1/10 скорости света, им понадобится 100 000 лет, а взрыв произошел всего 1000 лет назад. Кроме того, все равно то вещество наверняка даже не долетит до нас: газ и пыль, находящиеся в космическом пространстве, замедлят скорость и остановят осколки Крабовидной туманности еще до того, как они приблизятся к нам.