Совместимость. Как контролировать искусственный интеллект (Рассел) - страница 43

. Аналогичная система действует всякий раз, когда вы идете и затем останавливаетесь; если бы она прекратила работать, вы тут же упали бы. Как и в случае мигательного рефлекса, довольно трудно отключить этот механизм и позволить себе упасть.

Итак, рефлекторные агенты выполняют задачу разработчика, но не знают, в чем она заключается и почему они действуют определенным образом. Из этого следует, что они не могут в действительности принимать решения сами; кто-то другой, обычно разработчик или процесс биологической эволюции, должен все решить заранее. Очень трудно создать хорошего рефлекторного агента путем обычного программирования, за исключением очень простых задач наподобие игры в крестики-нолики или экстренного торможения. Даже в этих случаях рефлекторный агент крайне негибок и не может изменить свое поведение, если обстоятельства указывают, что реализуемая политика уже не годится.

Одним из способов создания более мощных рефлекторных агентов является процесс обучения на примерах. Вместо того чтобы устанавливать правила поведения или задавать функцию вознаграждения либо цель, человек может дать примеры решения проблем и верное решение для каждого случая. Например, мы можем создать агента-переводчика с французского языка на английский, предоставив примеры предложений на французском языке с правильным переводом на английский. (К счастью, парламенты Канады и ЕС ежегодно создают миллионы таких примеров.) Затем алгоритм контролируемого обучения обрабатывает примеры и создает комплексное правило, которое берет любое предложение на французском языке в качестве входа и делает перевод на английский язык. Нынешний чемпион среди обучающихся алгоритмов машинного перевода является разновидностью так называемого глубокого обучения и создает правило в виде искусственной нейронной сети с сотнями слоев и миллионами параметров. Другие алгоритмы глубокого обучения оказались очень хороши для классифицирования объектов в изображениях и распознавания слов в речевом сигнале. Машинный перевод, распознавание речи и визуальных объектов — три самые важные подобласти в сфере ИИ, поэтому перспективы глубокого обучения вызывают такой энтузиазм.

Можно почти бесконечно спорить о том, приведет ли глубокое обучение напрямую к ИИ человеческого уровня. По моему мнению, которое я прокомментирую в дальнейшем, оно далеко отстает от необходимого, но пока давайте сосредоточимся на том, как эти методы вписываются в стандартную модель ИИ, в которой алгоритм оптимизирует фиксированную задачу. Для глубокого обучения, как и для любого контролируемого обучающегося алгоритма, «вводимая в машину задача» обычно состоит в максимизации предсказательной точности, или, что то же самое, минимизации ошибок. Это во многом кажется очевидным, но в действительности имеет два варианта понимания, в зависимости от того, какую роль выученное правило должно играть во всей системе. Первая роль — это восприятие: сеть обрабатывает сенсорный входной сигнал и выдает информацию остальной системе в форме вероятностных оценок воспринимаемого. Если это алгоритм распознавания объектов, он может сказать: «70 % вероятность, что это норфолкский терьер, 30 % вероятность, что это норвичский терьер»