— лишь нижняя граница вероятных возможностей машины, потому что есть другие концепции, более эффективные. В группе из
n человек общая доступная информация хранится отдельными частями в
n мозгах и передается между ними очень медленно и несовершенно. Поэтому
n человек тратят много времени на собрания. У машины нет необходимости в этом разделении, которое часто мешает составить полную картину. Красноречивым примером отсутствия надлежащей структуры в сфере научных открытий является долгая история пенициллина
[133].
Другой полезный метод расширения возможностей своего воображения — подумать об одном из источников сенсорных входных данных, скажем, чтении, и отмасштабировать его. Если человек может читать одну книгу в неделю, машина могла бы прочитать и понять все когда-либо написанные книги — все 150 млн — за несколько часов. Это требует соответствующей вычислительной мощности, но книги можно было бы читать, по большей части, параллельно, то есть простое добавление чипов позволяет машине масштабировать свой процесс чтения. Аналогично машина может видеть все одновременно через спутники, роботов и сотни миллионов камер видеонаблюдения, смотреть все телевизионные трансляции мира и слушать все мировые радиостанции и телефонные разговоры. Очень быстро она получила бы намного более подробное и точное понимание мира и его обитателей, чем любой человек в принципе может надеяться приобрести.
Можно также представить себе масштабирование способности машины к действиям. Люди имеют непосредственный контроль лишь над своим телом, тогда как машина может контролировать тысячи или миллионы объектов. Некоторые автоматизированные фабрики уже обладают такими возможностями. За стенами фабрики машина, управляющая тысячами ловких роботов, может, например, строить огромное количество домов, каждый из которых приспособлен под потребности и желания своих будущих жильцов. В лабораториях можно было бы отмасштабировать существующие роботизированные системы научного исследования, чтобы они ставили миллионы экспериментов одновременно, — например, для создания полных прогностических моделей организма человека вплоть до молекулярного уровня. Заметьте, что мыслительные способности машины обеспечат ей намного большую возможность обнаруживать несоответствия между научными теориями, а также между теориями и наблюдениями. Действительно, вполне вероятно, что нам уже хватает экспериментальных данных, чтобы найти лекарство от рака, мы лишь не можем свести их воедино.
В киберпространстве машины уже имеют доступ к миллиардам людей через дисплеи всех смартфонов и компьютеров в мире. Это отчасти объясняет способность IT-компаний создавать колоссальное богатство, имея очень мало сотрудников; это также указывает на серьезную уязвимость человеческой расы для манипуляций через экран.