На службе у войны: негласный союз астрофизики и армии (Тайсон) - страница 117

.


___________________

По сравнению с фотографией спектроскопия – вторая «повивальная бабка» астрофизики – может показаться слишком мудреным предметом, доступным лишь посвященным. Ее рождение не было отмечено торжественными фанфарами и восхищенными газетными публикациями.



Как только телескоп сделался стандартным инструментом астронома, множество людей стало тратить огромное количество времени на поиски на небе еле заметных световых пятнышек. Эти пятнышки наносили на карты, оценивали их яркость и цвет, вносили во все более и более пухлые каталоги звезд, туманностей и комет. Работа казалась неисчерпаемой. Но ни одна звездная карта ничего не говорит о том, из чего состоят звезды, каков их «жизненный цикл», как они развиваются. Для того чтобы это понять, надо знать особенности химии и физики звезд. Вот тут-то на сцену и выходит спектроскопия.

Каждый химический элемент, каждая молекула – каждый атом кальция или натрия, каждая молекула метана или аммиака, неважно, в каком месте Вселенной эта частица находится, – поглощает и излучает свет одним только ей присущим образом. Каждый электрон в атоме кальция и каждая электронная связь между атомами в молекуле метана совершают точно такие же колебания и вибрации, как соответствующий электрон и электронная связь в любом другом атоме кальция или молекуле метана, и при каждом таком колебании или вибрации поглощается и излучается ровно одно и то же количество энергии. Эта энергия проявляется во Вселенной как свет с определенной длиной волны. Соедините вместе все колебания электронов в атоме или молекуле, и вы получите их электромагнитную «подпись», их собственную и уникальную разноцветную радугу. Спектроскопия и есть способ, которым астрофизики регистрируют и анализируют эту радугу.

Предыстория спектроскопии начинается с 1666 года, когда Исаак Ньютон показал, что видимый «белый» солнечный свет, если его пропустить через призму, разделяется на непрерывный спектр из семи цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового (школьники запоминают эту последовательность с помощью предложения «каждый охотник желает знать, где сидит фазан»). На протяжении пары следующих столетий исследователи на нескольких континентах шли по следам Ньютона. В 1752 году шотландец Томас Мелвилл обнаружил, что, когда он сжигал щепотку морской соли (то есть натрия) и направлял свет этого пламени через щель на призму, на выходе он получал четкую ярко-желтую линию; спустя два с половиной века натрий станет главным ингредиентом желтых уличных газовых фонарей. В 1785 году житель Пенсильвании Дэвид Ритенхауз придумал способ получать спектры без помощи призмы: экран, сделанный из натянутых волосков, плотно уложенных параллельно друг другу и образовывающих ряд щелей, тоже разлагал пучок света на составляющие его лучи с разными длинами волн. В 1802 году англичанин Уильям Хайд Волластон нашел, что спектр Солнца содержит не только семь цветов, увиденных Ньютоном, но и семь темных линий или промежутков между ними. Стало понятно, что видимый свет содержит большой объем скрытой информации. К этому добавились сделанные двумя годами раньше открытия инфракрасных и ультрафиолетовых лучей: оказалось, что и сам свет может быть скрытым от человеческого зрения.