Время переменных. Математический анализ в безумном мире (Орлин) - страница 101

Математика – узор, сотканный из множества нитей: формальных и интуитивных, простых и значительных, мгновенных и вечных. Люби́те ту нить, которая вам нравится. Но не принимайте ее за весь гобелен.


XXVII

Труби, Гавриил, труби!

В старой шутке спрашивается, способен ли Господь, будучи всемогущим, создать такой тяжелый камень, который он сам не сможет поднять. В вопросе содержится теологическая ловушка. Ответите «нет», и вы недооцените способность Господа творить; скажете «да», и вы неуважительно выскажетесь о его физической силе. Это называется «парадокс» – рана, которую логика наносит сама себе. Это довод, в котором кажущиеся правильными предположения приводят с помощью такой же с виду правильной логики к совершенно идиотическим заключениям.

И если вы думаете, что теология кишит парадоксами, то подождите, пока встретитесь с математикой.

«Труба Гавриила» (или «рог Гавриила»), мой любимый парадокс в математическом анализе, получил свое название в честь архангела Гавриила. Его труба, которая передает на землю послания с небес, чудесна и ужасна, конечна и бесконечна; это связующее звено между смертным и небесным. Такое название очень подходит объекту, обладающему внутренним противоречием.

Чтобы создать трубу, вначале начертите кривую, соответствующую уравнению y =1/x. Когда расстояние по оси х растет, высота по y падает. Когда x = 2, y = ½. К тому времени, когда х добирается до 5, y падает до 1/5. И так это и продолжается вдоль всей оси.



Вскоре x становится достаточно большим, а y – совсем крошечным. Когда х равен миллиону – что соответствует примерно 10 км пройденного пути, – у падает до

толщины клеточной мембраны.



К тому времени, когда х добирается до миллиарда – то есть если вы читаете эту книгу в Лос-Анджелесе, то он находится где-то около Москвы, – y составляет

По моим расчетам, это половина ширины атома гелия.

Тем не менее кривая движется, так и не пересекая ось, к неисчислимому горизонту, который мы называем «бесконечность».



Теперь мы должны закрутить эту кривую вокруг оси х, чтобы, рисуя тело вращения, получить трехмерную фигуру. Эта имеющая веретенообразную форму красота – собрание неисчислимого множества дисков, каждый из которых бесконечно тонок, – и есть труба Гавриила.



Как и любой трехмерный объект, «труба» позволяет провести два вида измерений. Во-первых, мы можем измерить ее объем – то есть какое количество кубических единиц воды требуется, чтобы ее наполнить. Во-вторых, мы можем измерить площадь ее поверхности – иначе говоря, сколько рулонов оберточной бумаги потребуется, чтобы ее завернуть.