Алгоритм решения 10 проблемы Гильберта (Паршаков) - страница 2

Выше я привел пример с а=2.5, значения b и с были соответственно 2.625 и 3.625, если предположить, что число 20 это производная числа 2.5, то получится коэффициент равный 8, и следовательно числа 20,21,29 не являются взаимно простыми. Проверим это предположение



Коэффициент кратности исходного уравнения совпадает с разностью между «b» и «с». Чтобы выяснить совпадение это или закономерность, проверим другую тройку 15,36,39. Разница между «b» и «с» составляет 3

Пример № 5



Получилась уже известная тройка 5,12,13, то есть удовлетворяющая условиям исходного или первичного алгоритма, что и требовалось подтвердить.

Остается еще один вопрос. При возведении числа в квадрат не важно, с каким знаком: плюсом или минусом, результат все равно будет иметь положительное значение. Это важно для подтверждения правильности алгоритма. В примере 3, число «b» имеет отрицательное значение, но если поменять знак ничего не изменится, и результат останется прежним. Если поменять знак числа b с минуса на плюс, разница между b и с, уменьшится в 9 раз

Пример № 6



Исходя из вышеизложенного, можно предположить, что разница является коэффициентом кратности исходного уравнения. Для проверки этого предположения нужно разделить числа тройки на получившийся коэффициент.



И вновь получилась уже известная тройка 3,4,5.

На основании полученных результатов, можно записать алгоритм кратности



Осталось объединить получившиеся алгоритмы в один универсальный.






Теперь можно вычислять абсолютно все пифагоровы тройки, зная или задавая значение любого одного числа из тройки и задавая кратность уравнению.

Задача № 1

Найти значения чисел «а» и «b» в уравнении



Условия задачи

Дано:

Значение числа «с»=161

Коэффициент кратности уравнения «k»=7

Воспользуемся формулами универсального алгоритма













Проверим получившийся результат





Задача решена, числа найдены.

Задача № 2

Требуется найти натуральные значения чисел «b» и «с» для уравнения



Условия задачи

Дано:

Воспользуемся формулами, для нахождения исходных «троек»







Подставим числа в формулу



Теперь нужно привести все числа к общему знаменателю



Остается воспользоваться формулой кратности

и разделить числа на коэффициент кратности,



Проверяем



Задача решена, числа найдены.

Из этой задачи видно, что знаменатель нужно помножить на числитель. Поэтому можно создать следующий алгоритм для произвольных «k» и «а».



Проверим действие этого алгоритма

Пример № 7











Алгоритм работает. Для генерации пифагоровых троек можно использовать как универсальный алгоритм, так упрошенный.

Для чисел кратным 4-ем существует еще один алгоритм. Его можно использовать для упрощенного нахождения пифагоровых троек.