Двигатель космолёта на эффекте гравитационного самоускорения (Путенихин) - страница 8



Это ускорение вызывает увеличение скорости космолёта. Для простоты произведём анализ этой скорости следующим образом. Пусть начальная скорость космолёта увеличивается каждую секунду на некоторую величину и составляет:



Здесь мы заменили константой k неизменные параметры космолёта, а время отбросили, поскольку вычисляем изменения скорости каждую секунду. На первой секунде возрастание скорости происходило от начального значения v>0 и соответствующего этой скорости ускорения. Во вторую секунду скорость возрастает от нового значения скорости v>1:



Соответственно, третье значение скорости составит:



Таким образом, каждое последующее n-ное значение скорости будет равно:



В уравнении величина k<<1, поэтому можно заменить это выражение приближенной формулой:



Найдём отношение конечной и начальной скоростей, чтобы увидеть, насколько возросла скорость:



Видим, что для удвоения скорости космолёта необходимо время, численно равное n = 1/k. И здесь мы видим, что малость величины k требует очень длительного времени на разгон. Например, для принятых выше значений параметров космолета величина k равна:



Следовательно, для удвоения скорости космолёта необходим почти миллиард секунд или:



И это только для удвоения начальной скорости. Для того чтобы скорость возросла в 30`000 раз и приблизилась к скорости света, необходимо время почти в миллиард лет. Попробуем изменить параметры космолёта, чтобы сократить это время. Пусть космолёт имеет вид двух «бубликов» большого диаметра, соединённых лёгкими перемычками длиной 100 метров. Массу каждого из бубликов примем равной 100`000 тонн, что примерно в два раза больше массы океанского лайнера «Титаник». В этом случае величина константы k будет равна:



Соответственно, время на удвоение скорости составит:



Это заметно лучший показатель. Для достижения гравитационным самоускоряющимся «двигателем» скорости, близкой к скорости света, в рассмотренном случае понадобится около 60`000 лет. Увеличение массы космолёта в 1`000 раз, до 100`000`000 тонн на каждый «бублик» (примерно 2`000 «Титаников»), сократит этот срок до 60 лет. Космолёт должен двигаться вдоль центральной оси «бубликов», которые в процессе движения могут вращаться, чтобы создавать эффект искусственной силы тяжести в отсеках. Форма бубликов уменьшает торцевую поверхность космолёта и уменьшает опасность повреждения встречными космическими телами. Кроме того, передний бублик может иметь утолщенную поверхность.

Понятно, что построить такой космолёт в космосе, а затем разогнать его до достаточно большой скорости в 10`000 м/сек – задача технически весьма трудная. Но в принципе разрешимая. В частности, в качестве связанных друг с другом «бубликов» можно использовать пойманные в космосе астероиды.