Это не единичный случай. Это обычная схема в истории математики.
Помните странную альтернативную геометрию, о которой шла речь в первой главе? На протяжении веков ученые рассматривали ее как фантазию, поэтическую прихоть. Они не видели соответствия с нашей реальностью, в которой, как предполагалось, действовал постулат Евклида о параллельных прямых.
Но в один прекрасный день на сцене появился молодой клерк из патентного бюро по фамилии Эйнштейн. Он понял, что безумная геометрия — не просто мысленный эксперимент; она определяет структуру космоса. С нашей ограниченной точки зрения, вселенная выглядит евклидовой, а шарообразная Земля — плоской. Но если изменить масштаб и отбросить предрассудки обитателя плоскости, откроется совершенно иная картина: переменчивый ландшафт поразительных изгибов[14].
«Бесполезная» геометрия становится чертовски полезной.
Мой любимый пример касается логики как таковой. Ранние философы вроде Аристотеля разработали логическую символику («если p, то q») как руководство научного мышления. Потом на нее покусились математические теоретики и превратили логику в нечто необычное и абстрактное. Реальность улетучилась. В XX веке люди вроде Бертрана Рассела сочиняли фолианты с латинскими заголовками>{16} с целью «доказать», исходя из элементарных предпосылок, что 1 + 1 = 2. Что может быть более бесполезным, более безнадежным?[15]
Одна мама пилила сына-логика: «Солнышко, к чему тебе вся эта абстрактная математика? Почему бы не заняться чем-нибудь полезным?»[16]
Маму звали Этель Тьюринг. Вскоре выяснилось, что ее сын Алан все-таки на что-то годен: он изобрел логическую машину, которую мы теперь называем «компьютер».
Я не могу винить ее за скептицизм. Кто бы мог подумать, что исследование логических систем, которое вел ее сын, определит облик нового столетия? Сколько примеров я ни узнавал, этот исторический цикл перехода полезного в бесполезное и снова в полезное остается для меня чудом и тайной.
Мое любимое описание этого феномена — чеканная фраза физика Юджина Вигнера: «Непостижимая эффективность математики»[17]. В конце концов, бактерии не знают теорию узлов, так почему они следуют ее законам? Пространственно-временной континуум не изучал гиперболическую геометрию, почему тогда ее теоремы выполняются так безупречно?
Я читал философов, которые пытались ответить на эти вопросы, но, на мой взгляд, их тезисы умозрительны и противоречивы, и никто из них не смог умерить мое изумление.
Итак, как лучше понять взаимоотношения между поэтессой, которую мы называем Математика, и искателем приключений, известным как Естествознание? Возможно, мы должны рассматривать их связь как симбиоз двух весьма разных существ. Например, птица, поедающая насекомых, примостилась на спине носорога. У носорога не зудит кожа. Птица удовлетворяет аппетит. И они оба счастливы.