Работа с данными в любой сфере (Еременко) - страница 34

, а не на том, чего не знаете. Используйте и свои углубленные знания другого предмета, и любые навыки, которые вы, вероятно, получили как профессионал и/или студент.

Глубокие знания

Мало того что в науку о данных несложно вникнуть – занявшись ею после освоения какой-либо другой дисциплины, вы получаете преимущество. Вот где творческий стержень науки о данных может проявить себя еще раз. Возьмем в качестве примера писателей-профессионалов. Если писатель потратил все свои усилия только на изучение того, как и что писать, и у него не было времени на расширение своего кругозора, на прочтение множества книг по самым разным вопросам, то у такого писателя не хватит знаний и опыта, чтобы опираться на них в работе. То же самое верно для науки о данных: те, кто изучал только ее всю свою жизнь и имеет ограниченный профессиональный или личный опыт в других сферах, будут подходить к любому проекту однобоко.

Итак, предположим, что лингвист решил заняться наукой о данных. Он будет иметь значительное преимущество перед другими аналитиками данных в связанных с лингвистикой проектах. Это правда: назовите любую профессию, и я расскажу вам, как применить в ней науку о данных. Аналитик данных с опытом в лингвистике, например, мог бы выиграть от получения доступа к материалам из Международного архива диалектов английского языка, в котором хранятся голоса тысяч участников со всего мира, и использовать эти звуковые файлы для составления диалектной карты мира. «Сырой» аналитик данных может поэкспериментировать с материалом, но специалист по данным с правильным прошлым задаст правильные вопросы, чтобы получить действительно интересные результаты. Скажем, Вест-Индия, известная лингвистам распространенным там необычным сленгом, может быть взята в качестве объекта первоначального исследования, результаты которого заложат основы для дальнейшего изучения поколенческих, этнических и гендерных различий в речи.

Стать специалистом в области науки о данных не означает разворот на 180˚ по отношению к тому, что вы узнали и освоили раньше. Как раз наоборот. Иногда самые интересные для вас проекты будут находиться «рядом с домом». Подумайте о проблемах, с которыми вы сталкиваетесь на своем рабочем месте: есть ли способ решить их с помощью данных?

Гибкие навыки

Хотя это, несомненно, полезно, вы необязательно должны быть экспертом в какой-то области, чтобы иметь фору в науке о данных. Даже гибкие, широко использующиеся навыки, такие как работа в команде и опыт публичных выступлений, могут значительно помочь вам. Они принесут даже больше пользы, чем глубокие знания, тем, кто, еще не успел получить достаточный жизненный опыт или образование. Подумайте о своих навыках: вы легко общаетесь? Можете ли вы адаптировать устоявшиеся решения к различным ситуациям? У вас эстетический вкус? Вы нестандартно мыслите?