) сторонами. Хотя ему и удалось вывести важную формулу, связанную с π, он не смог применить ее из-за сложных вычислений: его формула включает вычисление квадратного корня из квадратного корня числа. На современном языке математики формула Виета записывается следующим образом:
Вывод этой и других формул подробно объясняется в главе 4.
ФРАНСУА ВИЕТ (1540–1603)
Строго говоря, Виета нельзя назвать профессиональным математиком: он был адвокатом, а после восшествия на престол Генриха IV занял должность при дворе и даже служил королевским советником. Легендарную известность ему принесла криптография: он с легкостью расшифровывал послания испанского монарха Филиппа II, врага Генриха IV. Филипп II в конце концов заподозрил, что французский король заключил сделку с дьяволом, поскольку ему удавалось мгновенно угадывать все его дипломатические уловки, Виет достиг отличных результатов в геометрии и алгебре, продвинул вперед тригонометрию и решение уравнений. Возможно, важнейшим из его открытий является создание современного символического языка алгебры, который произвел революцию в математике и способствовал прогрессу в науке.
Его принципиальным соперником, а впоследствии другом был Адриан ван Роумен (1561–1615).
Виет предложил ему задачу о касающихся окружностях, известную как задача Аполлония.
![](data:application/octet-stream;base64,/9j/4AAQSkZJRgABAQEASABIAAD/2wBDABALDA4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9
PDkzODdASFxOQERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVGC8aGi9jQjhC
Y2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2NjY2P/wAAR
CAFAAUADASIAAhEBAxEB/8QAGwAAAwADAQEAAAAAAAAAAAAAAAEFAwQGAgf/xABKEAABAwMB
BQUEBgcGBAUFAAABAgMEAAURIQYSMUFREyJhcYEUMpGhFSNCUrHBJDNDYnKC0QcWkqLh8CVT
ssImNETS8TVVY3OT/8QAFAEBAAAAAAAAAAAAAAAAAAAAAP/EABQRAQAAAAAAAAAAAAAAAAAA
AAD/2gAMAwEAAhEDEQA/AO+Jp5oo50CzRmnRQLNMGg0c6BZozTpCgCaM606OdAs0Z0p9KOVA
s0waDQKBZoBoqPO2otcJ4MB4yZJ0SxGT2iyemmmfCgsE0ZqB7ZtFPV+iwI9vYJ0cmL3lkfwJ
4HwNelWCZKSRcL7Nd192MEsJx0IGSfjQWnXm2Ub7riW0feWoAVoq2gtCDhV0hZ8H0mtRrY+x
tK3zBDi+anXFLz8Tit5uy2tofV22GjyYT/Sg11bUWRJINzjZHRWaE7U2QkAXONr1Vit72GJj
/wAqzpw+rT/Sl9GwjnMOPrx+qTr8qDC3fbU4cIucInp26c/jW8hxLiQpCgpJ4FJyDWg7YbS6
CF2yGc8wykH4gVoq2Os470Zl6I7nIcYfWlQPhkkfKgvZozUFVovEQ5t98ccSBo1ObDmT4rGD
SN6ulvTm6WdxxA4vQVdqnz3TqBQdATSzWjbbzbrqnegym3sHBT7qh/Kda3hQGdKM0+VHWgWd
aAafOigWaM0GnQBNLNPnQKBZozTooDNIGnzooEadI8adAUqKKApijlQKApUUUAaOfCg0UD6U
uVFYpUpiHGXIkupaaQMqUo6D/XwoMpNR7htA1HkmFBjrnz8Z7BkjCPFauCa1im5bQpVhx22W
wnAwnD76euvuD5nyNV7dbYdsj9hCjoZb5hI1PmeJ9aCW3arlc2/+Ozd1s4Jhw+4jyUr3j5A4
qrAt8O3NdlCjNsIPEIGM+Z51s0CgOHKn6UjToClRRyoCnS5UUD9KQp0hQPNLnwoNFBOuVitt
ycDsmMO3GqX2yUOA40O8NTjxqe4m+2bvML+l4SQMtuaSEgdCNF9ddTXRGlgYoNC13iHdW1mM
shxs4cZWndcbPQprfBqXdbDFuKxIBXGmoH1cpk7q0+fUeBrVau8q1vtxL8lAQs7rU9vRtw8g
sfYV8uPSgvc+FAooFAU6VFAzSpmjlQKnSooHSFOkONAGnnxoIooFRTxRigXKnzoNAoF60U6W
KAp58aCK07ncY9rhqkyVHGd1KEjKnFHglI5k0Culzj2yMHZBUSo7rbaBvLcVySkczU6DapM2
Yi5XwpU8g70eIk5bj+J+8vx+HLGW1Wx9yT9LXUAz1JKW2gcpjI+6nqo81eg042QNKBaYpig0
CgXrRTpAUBT9axvvNR2lOvuttNp4rWoJA9TUhzam1h1TUVx6c8ni3DaU4fPI0+dBap1z5vd3
kNhcHZySoZxmS8hkj+U60t/a15AUhi0x/wB1xa1H5aUHQEjrRka61zgjbXK1VPtiD0S0oj5i
kqNtePcn2xXm2oflQdLSqADtYhJK27M5jklTiSfiKabre2B+lbPqWBxXGkJVnySdaC9R61DR
tXbUqSiaJNvcUcBMthSPnwx61WjS40xBXFkMvoGhU0sKHyoM5pcqZ1oFAcqxPsMyWVsvtoda
WMKQsZB9Ky8qMcaDm1qkbLKCgVyLJnBTqpyJ4g8VI+Y/HoGHm32kOsrSttYCkqScgg869qSF
ApUAQRgg6g1zK0ubJyS62FLsbq8uJAyYijzHVBPEcvxDpqPWvKFpcQlba0rQoBSVJOQQeYNe
6A50uVM0CgVFPFGKAz40hToAoEadI8aMUDpUUUBTFLlQKB+lIUUAUGOS+1FjuPvrCGm0lS1H
kBUS1w3rpOTe7ikpwP0KMrgyg/bI++fl+HmT/wCIL0qGFZtsBQMgDg89yR4hPE+PKuhxQFHK
g0cqAoFaV0usO1MdpMeCCrO42NVuHTRKefEfGpYYvN8G9JWu0wlD9S0QX1g/eV9nQ8ONBuXD
aGDBeMZKlyZnKNHTvrJ4a40HrWopG0d0Gq2LOwoHRP1z2PPgPTUVVt9sh2xnsoUdDKeZSO8r
zPE+tbYFBBjbJW5Dhem9rcZB/ay1lfpjhVxppDKA20hLaEjASgAAV6IooCmKRo5UDPCl1o5U
DnQPnwpChRCQScADiSa0Hb3amVFLlyhpUOIL6c/jQb6hkEEZB4g1GlbLWqQvtW45iPg7yXoq
uzWk+GNKynaSyggfSkTJ4fWCvbd+tDisIucMnp2yR+dBP9j2htmPZZjV0YH7KUNx3HgscT4m
tiHtJFceEWehdul4/UydAr+FXBQqu2428jfaWlaTzSrIrDNgxrhGVHmMIeaVxSofh0PiKDY5
Uda54226WRRXZ3Pa4ecmDIWcpH/41nh5GqVru8a5haEBbUhv9bHeTuuN+Y6a8aChz4V5WhLi
FIWlKkKBCkkZBHQinjWgCg52Ck7OXFNvWs/RkpR9kUs57Fw6lonoeI/OuirVudvYukF2JKRv
NuDGRxSeRHiK0bBNeWl22z1ZnwsJWT+1R9lwdcjj40Fk0qDRyoCnSooHSFGKBxoAmnSNPnQL
NGaKKApg0GgcaBVMv1yXb4aUxwlUySsMxkHms8z4DjVPhXPQEi77SvXPeJjQMxow5KXjvrB+
VBWtkFu2QGYjRz2ae8vGCtXNR8Sda2+dBp86BE1GuF5eMw220MpkzhguKWcNMDqsjn4DWsUu
fJvEl23WhxTTTStyTOHBB5ob6q6nl54qrb7fGtsYMRGg2jOSeJUepPM+NBq2uzohOKlSHlS5
7gwuS4NcfdSOCU+AqoDQaBQKgGnSoAmjnRSWtLaVLWoJSkZJJwAKBk1hlTI8JkvSn22Wx9px
QSKiO3qZdnHI+zzaS2g7q5736pJ6IH2zx8PQ1sxNm4jb/tM5TlxlEAdrKwoD+FPBIz/80GBd
/mzu7Y7Y4+k6e0yPqmx44OqhSTar5OCvpK9FhCtext6NzHks96ugIo60EVrZW0IUFvRlSnB9
uS4XCfPOlbzNptrCwtm3xG1D7SGEg/IVu86QoEUp+6n4VryLdBlKzJhRniObjSVfiKzqWlOq
lAeZFeTIZHF1vX94UEx/ZeyvLC/o9ppY4KZy1j/DisC7FPjhRtd9ls5xhEkB9OnIb2oFXEOo
cGW1pUP3VA16oIBut6t4JudrTIaGpfgK3sD+BWtNxNn2mSl2NIAmNDuPNK3H2ePEccanQ6Ve
NS7ns/Auaw642pmSkgpkxzuOpI/e5+tBrRLvIt76IN+3EOKO6zMSMNP+f3VeHDpyq6DXKy1z
rbFci3yOLraVd1UlP6xtPVaeeOo4YzxrzbLoLMplp6YJdlfO7Fmk5LKv+W4enQnh5cA6wmoW
0rTkUsXqKCXoP61Cf2rB99PpxHTWrucjThQRnIIBFB4ZeQ+y28ysLbcSFoUOYIyDXuoOz3/D
pcyxqWtSYxDsYrGpZVyHXdVkZq/QLNGaKKB0gafOkKAPlT9KRp6UB6UvSinpQL0pjyo0xRzo
Ju0M5VuskqQ0CXQncbA476jup+Zz6VkssAWy0xoecqaR3znOVnVR+JNaF2xN2gtdu03Wiqa4
DzCe6n5n5VcFAE1DuUt65TlWe3uKbCcGZJRxaQfsJP3z8h8s19uLrHYwIBT9IyyUs51CB9pZ
8APn1ratVtZtcJMdkqVqVrcVqpxZ4qUeZNBniRWIMVuNFaS0y2MJQnl/vrWXlRRkAZOMDiaA
9KYqPJ2ossZ0MqntrcJwEspLhz07oOtYW9on5OREsNzWeRdQlpJ9SaC76UDyqGJ+0K84sLLe
PvzRr8BWKdeLzbozkqVa4oZbGSRM1PgO7qaCxcrjGtkRcmWvcbTpwyVHkAOZqQiBLvziH7ul
UeECFNQAdVdC7167vLTPOpzKrs9dvpW7WGS6htOYrTbqFdgOu7nJX48fDhVRO1trQoIme0wX
CcbklhSfmMj50FtttDLaW2m0oQkYSlIwAPAV6zpU2VtBao0cPGa06DohLCg4pZ6ACtI/Td4J
3d6zwyBgqAVIcGnjhHPxFBTuN3gWxvemyWmeiSe8fJI1NS0364zs/RVkfWjH66WoMpB5EDUq
HlW5b9nrdAcLyGi9JOqpD57RxR65P5VUwKCEiFtDJWDMu7EVGMKahsZz5KXkivbezjZcUqXc
bnLChqhySpKfgjFW6QoIP9y9nwc/R2T4vOH/ALqzjZaxgk/RjHADgarmjSghL2NsCiM25I59
11Y/A17e2bZVu+z3G6xQnglqWoj/ADZq2a8qWhtBWtQSlIypROAB1JoIi4e0MXeMS6x5Yxoi
Yxu4/mRisZv9xga3eyuttAayIqw8nPUp4pFE/bSyw1dmh9Ut0nG5GTvfPh86007VXV9eYmzE
tTecBS1FGf8ALig6C3XaDdEFcGS28BxCdFDzB1FSbps8Qt2RaUMjthiTCc0ZkDy+yroRz9cx
LgqXOdU+9shIZfb/APURnyhwHqCE9751gh7bT7W8GLnFkPMZASt5HZugePJR+FBU2evJgPot
z/aCIV9k1236yKvk0vqk/ZV/sdhnwrlLjBtm18Jcm1SkCYE7u8NCRyS4njjTQ8iMitjZK9vz
UPW25pKLjD7qwritPDe8+vmDzoPe0oFvmwL2nA9nWGX8D3mlnGp8Dr610AOlat0hIuNukQ1k
APtlGSM4JGh9DrWnsrMM7Z6G65+sSjs1jnvJO7r46Z9aCt6U/SjSlQP0pDyp6UhQBp+tBFGK
BUU8UYoFyozTxRig5+zK9q2mvUvihotxWz03RlY+Jq1LktQ4jsl9W600grUfAVE2Ky9Z3Zqk
7pmynZGM8Mqx+VK7j6Yvkaz7pMVgCTM10V9xHqdSOlB6sTR7ZV1uYDU+4nDTSzq00NUtjxwM
nhVx59qOyt55xLbaBlS1HAA8TWjdblFguMoWjt5jhPs7CE5Ws+HQdSdMZqNIhIWBcNrprbaM
7zUHtMNIxrgj7av96ig2vp+TdFlvZ+IH2wcKmSMoZSdOA4q58MV6Vs0mcrfvk5+4HXDQPZNJ
15JTrnzNAvj8lO5ZrPJkISBuuugMNY6je1I8AK8qhbTy1HtrrDgJHBMVgub3mV4x6UFmLCiQ
m+ziRm2Ejk2gJrKtaEAlagkDmoioH900OYVKu10kK5gyN1J9ANKadirGM78VbmeO++s/nQXB
IZPB1H+IVCt+/tBcUXN0AW6MsiG2cHtVjILp8uXx05yrvs5aH7pDtMCGGnlHtpDqFK7jIyMa
niToKqK2IspO80w6yoYwW31Ag+GaDotM8PlUKdd3J0lVtszTUp0YD7zg3mWR0P3leA/I1Bi2
2Tc5j0az3m4/RiAW3pL7u+HFfdb4ZHU/6ZqQ4O0FkjBiGzbZkZsAJQkFlxR6nlk8yTQZI+xl
ujhLyHH0TgorMtpW4oE8cJHdA1OmOFZVPXy0nLzabtESNVtJ3JAGfu8FYHTFemtpmG3Es3WL
Itjqju7z6fqica4cGhHjpVll1t9pLrLiHG1DKVoUCCPAig07XeYN2bUYj28tPvtKG6tB6FJ/
+K36lXWwRbi57SkrizkjuSmTurHn94eB5VgiXeTBdbhX9AaeWrcalo/Uvnl/CrwPTSgu58aV
OjFAqPWgipm0F6j2O3LkPEFw6NN81q/p1NB5vu0ESytp7UKekOHDTDeqlnl5Dhr+NRGbJdto
lIk7QyFRowPdgs93I/eP9cnyrc2bsDjbpvF3w9dJGF94fqRjQAdcaeHDz6QDSg0oFot9sbCI
URpnHMJyo+ajqa3RTxpRigWleHmWZDZbfbQ6g8UrSFA/GsmKMUHK3DY1lDpmWKQu3TBqkJWe
zPgRxH4eFc5dZ85q4tOzGEw77EwUOp0blo4YPj+Oo00FfTMVPvdmi3qEqNKT4tuD3m1dR/Sg
zW24MXS3szIystuJzg8UnmD4ipmz6fZbreoO4E4kiSkg6EODp4FJ+Nc5srKf2ZvT1iuy0NtO
nfaWfdKjwIPQj5jzrptzsNswQrCZMA5TjipCxj5KNBaop4oxQHrSFPFAFAjTpEU6ApUYoxQH
KvLjiWm1uL0ShJUfIV6rSveRY7gQNfZnMf4TQTtnHEW3YyK89kNtR1OqzxxqqpaLw3s/YDcp
YSu53NRkBoHjn3c9EgY9a0r/AHVmDshbLarccecaaLzIVqEABWDjhkgema2LLsy5epBvW0KS
tT3ebjapCU8s88dB8aCbAuF1lF2RZIbsme9/5ie8kYH7iAdEpHxPThWzC2b2lZluTHvo+TJW
B35ii6pOOmmld8htLaAhtKUoSMBKRgD0r1jWg5FV42qto37jZ2pTI1KoytR8M/hVizbR268k
txnFIfSMqYdG6sf19KrEVCv2zEe6Zkxj7LcU4U3IbJByPvY/Hj+FBd5V5ddQwy486oIbbSVK
UeAAGSahbNXqRLU9bbqjsrnF98cO0T94f6aag86zbRr7ZmNbE53rg8Gzg4+rHec/ygj1oPOz
DDq2ZF1lJUmRcV9ruq4obGiE/D8aw3ByRfpztqhqU1BaO7NkpOqj/wApHj16fI7N7mPshm22
zdE6V3UHGjLY4uHy4Dx68K3rZb2bZBaiRwdxsYyo6qPEk+JNBmjx2okdtiO2ltpsbqUp4AVl
50iKKBLSlaSlaQpKhggjINQ3dmm2HFSLLJctj6sFSW+80vH3kHThnhirtGKCC3fn7ctLG0Ef
2YlW6mW1lTCz4nik+fQ1WlRo1yhLYkIQ9HeTqOII5EH8CKzOtNvNqbdbS4hQwpK05BHiKgLt
k2xKXIsoL8Unect61cOpaPI+H+lAQ5cixTW7bc3VPRHlbsSYs65/5bh69Dz/AA6EVNadt+0l
qcTu9qw5lDjaxhbahyI5KFa1llPQpRslwe7R9tO9HeVxfa/9yeB+OvGgtmuQitjafat6Y737
fbFdmwn7K3OZ8eH/AE1d2inG22OZKTnfQ3hODjCj3QfQnNa+yNvFv2diowO0dT2zh6qVrr6Y
HpQWjRypmlQHKjrRyoxQPnwpUc6AKANFBFFBze3VmF0sy3m0j2iKC4g8yke8n4a+YqFYJ8p6
6bPGS+l1oJeQ2/nBVlOrawftAga88ivoKq+ZGCgbSq2eLrrbAm9syW8BSMoJyD/h+FB9N5Cn
Uiw3J2Yy7FnI7O4RFBD6fvdFjwNVsUDpCnSAoAmnQaOdAs0Zp0UCzpXO7SXRx5D9mtbaZE1x
lXbZ91hsjUq8TnQePx3b5cJLJag21KV3CVns973Wkji4rwHLqevCp8mCmzWRUCEou3C5L7Iv
LzvuLV7zhxrhIyfCg5HZi2wr3eoiGoy0RojAXIKte1c8+QJ4DoK+piuK/sxjdnbJsjTLjwRo
fujP/dXaigCaOdBqZcdoLdbJ0eJLf3HX/dwMhI4Aq6Amgp5oB0op8qDk9tY7sNcTaCHn2iEo
JcAz3myeB8Mkj+bwr23cY8naKVc1kex2yAkgnU7zg38j+UYq3e4omWaZHV+0ZUB54yPwrgdk
IouDDFvHebdd9qmHPFDeAhs+atSOlB2GzcZ1aHbvNSRMnd7dV+ya+wgemp4cda3rld4Vqa7S
bIQ3plKM5WryTxNTH71JuTzsPZ9sLKFbjs5wfUtHnu/fV8uHKtqBYYUBwyniqVLOq5Uk7yvT
OiR5UGmbnfrln6NtqYTJGj884UfJA4eule27BcHyhdx2gnOqHFMbDCfLu8a9ydrbOy92LUhU
t/k3FQXCfIjT51jN9u8hWYOzkpSMamS6lg/A0Ht7ZO2yFBUoy5ChwLspaj+NNrZO2Ryoxfao
ylcVMylpP414XL2nUQUW23tjGqVyCo58xSbl7UIB7W3W9w8g3IKfxzQNWz81lW/A2guDSscJ
BD6fgqvIm7Q24kTILVxYSP1sM7rnqg8T4Cn9O3WOf07ZyUE/ejOpePwGKyRtrLS872L7q4b+
cFqW2W1D14fOg1B7NdZK7ns7MQzckDDzS0lIdA+y4g6jpvD/AOMjjyNo4ClsNqj3a3r30tL9
5p0cEk80qxjoR5Vv3KywLsEvkdnITq3KYVuuJPIhQ4+tc5cTcbTcGJUlTapae41MSNxuUnm0
6Psq5g8PhkAbV3ZF12PiuNJUhcmSlpxvmhQzlJ8iK7VtAabS2kYSkAAAcgK+ZbQSQosTouU2
+ZKS+61jViQkYWkjkSDnxr6ekhQyDkEZFAzSpmgcqBcqM0+VLrQHOgGnzpUATRQadAjXDX9Y
if2i2mQ5ohaEpznmSpP5iu6NfO9vmXpO0TAYzvRoXbkjkEqUSflQdNtEhyC5HvcfOYndkoSN
XWCdR4lPEetWmHm5DCHmVhba0hSVDgQeBrHGdRNgtPboU2+2leDqCFDP51H2d37bNl2J1W8h
n66KSNS0o6j+U6etB0FIGnzoFAj5U/SkaePCgPStS6XBm2W92W/qlA7qRxWo8EjxJraNQGyL
3tCpZSFQbUspTnguRzP8o+ZoNmxQHmEOT7h3rjKAU6eTaeTaegHzPWpdykLkXq5yWyNyzQF7
nUPLSTkfyjFdQ4tLbalrOEpGSfAa1xOCnYG6XBe8HZ61Okp0JClhKR5Y+RoM/wDZstTdvnQn
UKbeYfClJUMEbwxw/lNdiD4VxU+SNnduGpbpCIlyaCXjyChpn0OPia7UEHBGDQB8q0plogTp
jEqVFS4/HOW1kkY1zy469a3aMeFAelHKimOFBo3uQiLZZry+CGVnHU4wK4PZWKqRaXI0d72a
Mvv3GZndwkDutJJ54JJPLPoan9ot13YrVojFSn3yFuJSMkIHAep19Key1g+kbNCdujyXYiU5
YiN91HH3l495Wf8AetBvQ7o6+wiJstb0eytDdTJkBSGRryHvKPHXrxrba2dRIUl28ynrk6MH
ccO6ykjmGxp8c1aSlKEhKUgJAwAOAFOgxsR2YrQajMtstjghtISB6CsnpRTx4UBmjOlKjlQH
pWN9hmU0WpDLbzZ4ocSFA+hrJyooIruzyY5U5Zpb1tcO8dxs7zJUeZbOR8MVrPXl+GFxdpoC
BHc09qYSVsKB5KB1TyGtdJ6V5UhK0lK0hSToQRkGg+Y7VWx20NPGMBJtM3dU2ve3uyWOByOJ
xkZPEHXJFd/YJiZ1jhSU/bZTnT7Q0PzBqXP2fVFbdFtQHYToIkW5asIUOrZ+yrPp5YqVsBdG
2pMuyr7VAQ4pyOl7RYH2kkciOOB40HdHypcuFM0uVAcqKfKlQHpQPKjHhRQBPhR6UGj0oAmu
LQDeNp9oHUFK2Y8JURIBzkqH9Qqui2iuqLPaH5ZP1gG60MZys8P6+QqF/Z9HU3s9Ilup+slO
rVvnipIGPx3qCxsnJ9p2XtzmODQb/wAJ3fyrxtCfYlw7unT2R0Ie7xALK+6rQccEpV6Vq/2f
rCtlI417q1jU/vE/nV+XGRMhvxXchDzam1Y44IxQZQQRpgigeVR9lJapdhYDx/SI+Y7yTxSp
Bxg+OMH1qwKANPPjSPnT9aCXtFcVW21qcZAVJdUGY6fvOK0H5n0rLZLci02piGkgqQnvq+8o
6qPxqdJBuO2EdjKVMWxrt3AD+1XokEeAGR51fA0oJu0kgRtnp7uQMMKAJ6kYH41FvjPsn9nX
Y6dxhhJx13k5re25ONkpxzyQP86a9bYND+6c9CMJCEJIHgFJOPlQam3cFmTbI8l9G81FfSXC
DqG1d1WPHO6fStGBeJmy0hu2XsF6CTuxpqR9nlnwGmnEeIxXXSo7c2E7HdHcebKFeRGKi7Pt
tXCxfRlzZQ85CWY7qFpyO77pH8uNaC7HksymUvR3UOtq4LQd4H4VkyM8a5F7YlcRZcsV1kQS
dS2VEpPqPzzQm3bbJRui7wVDGMqGv/RQdcVADJOAOdc3ftro9vcTCt6RNuDh3UIQcpSo8Mkc
T4D5VoO7L3WYypV/v6vZ0jeWho4RgakknA9cVPi2qPAtU+/xWFtpKOxgJKzvAKO52pJ5nezj
kKDDsfFfmbSMT5a1LkONvPlROdP1YPhrvfCus2KVjZyO1nJZU42cjHBZrX2ei9hepjI3SIEW
PECwMA6FSvmc+tZNkz2D93gKzvR5q1AEa7i9U/gaDofWij1oHnQFPPjSPnR60BRyoo5caA5U
UcuNFA8+NKj1oHnQBr57tJbltX263SI6pEyIliS0E493UKJGNcYB+NfQvWoBjpe2ylNupCmn
raEqSeCu+RrQbGzl/j32Al1BCJCAA81zQeo8DVjlXyxEOTBhOXG2Olu4Wl5UeXunRxAOEqx0
xoRzxmurs+2UZ9SY12QLfL0IC87iwRkEHkPPqME0HUcqVGQU5ByDwIp4oFnxop4pDjxoA14f
fajsreecCG0J3lKUcACp94v1uszSlTJCQ4BkMoILivT8zpXPCJc9sJSXZyHINlQQpDCtFveJ
/r8M8aCZcZj1/Mq7yEqTbIoKITRBHaunRJ0466n4da7GNG+htlwyBhUaKoq594JJPzzWjNjt
y7/brQwgJhW9HtLyE8ARo2n8TjmDW5tY4pnZuZuaqWEt467ygk/jQS/7Nz/4cWCCMSFcf4Um
usqBsZEXDtLzSzqJTifDCTuf9tdAPOggWX9E2hvMHACHFplt+O+MK+Yq8KhPthrbWI6CR28J
xs+O6oH86vDzoA0j40EVoX6WINkmyc4LbKt0/vEYHzIoNXZo+0x5dx3gozZTi0nGO4k7iR8E
/OrNaVljKiWWDHUgIW2whKgPvYGfnmt3FBB25BOyc4eCD/nTW5fQJGzlw3QVBcVak459zIr1
tDGEqwz2T9phWOeoGR8xSsjqZ1hhrXhYdjICxyJxgigz2t4SbXEeCt7tGUKz1yBUm5A2naKN
dBkRpeI0vXRKv2a/joSeArJsY6pWzrDLgKXoylsOJIxuqSo6fDFVZsNmfDdiyUb7Lqd1Q/3z
oNg0c6jWCa84h23TifboOG3FE57VP2XB5jj41XUQkFSjgDUmgg7QKVcbjEsTasNvDt5ZGchl
J0H8x09K97Qtb/0RCb7jbk1GUpGm6hJVjHTQU9mgZbcq7uDKp7xU3lOClpPdQPln1r1d1EXy
xJI7pfdJPQhtWPxoCwkOTb0ocDNKfghIrEj9B21cBUA3c4wUMji43pgfykmsmzur95wMf8RX
/wBKa97SNKbiNXJtKi7bnQ/hOMlvg4Nf3CfhQWKVeWnEPNIdaUFNrSFJUOYOoNegKAp86RFH
OgOlMcKXSigZ4UutFHWgfOlRzoAoCoTRUrbl8j3UW9IPmVmrpqJbFdvtNeXQButBlhJ8gSfx
oI0FxuN/aJdIC295icjBSoZClbgUfkVfGtuBa4rjkmwXRhD7Uf62GtfvFlWdAePdOnHmK0L0
gtbTyLgk7qob0Uk/urylXyAFXNpVGCmJeEDWE7h3B4tLO6oeOu6fSgmHZG4WwqXs/eXWRp9S
/qk+vD5V6MjbaMCDDgS/30nH5j8K60EKSCCCDwNGKDkTP20dUpKLRDa1wFKUDj/NrSXaNq7m
rdnXVmEyU4KIwOfLTH411+NeFAFBBs+yFrtRDnZmS/oe1fwrB8BwH41YmSmoMR6U+rdaZQVq
PgKzEVz9wIvt6Ta0HehwyHZhHBavsN+PU+VBtbPRXURHJspJEuevt3Eq4oBHdR6JwPjWG/qS
9cLREUcJ9oMlZ5BLSSdfUirhrj58ztRtDdifqozJgRzvfaPvnH8RTr4UFfZBSnNnIzyzlbyn
HTr95xR/OrVaVoimFaIcVQAU0yhCgPvAa/OtzFBCvCijaawKTxK30HyKB/Sro5VCv+79MWI5
G/7UrHXG4c/lV1PAUAeNc/turf2eVFBwuW80yk+JUD+RroDUDaxO+bM3jINzZyOoANBfzRmi
igSgFJIIyDpioOxqii2PwlFW9CkusYUdcZyPkavnUGoDBTb9s32dEt3JgPJJzq4jQgfynNAr
D+iX+9wc91TyZaM898d4+hGK6AGoVyHse09tnYHZyUqhuKzjBPeR58CKuigh7QQXkPtXqBn2
yGk76Bwfa4qRjrxI8fTGO/3ZD2yqpEBYcVOCWY4HFSlnGPMDPqK6A1xV6jx7Nf7aFvFFsflG
UpnGjLqRjeB5JJUMjlrQdhEjohw2IzWdxltLac8cAYqVtC8I0uzPqGQJwb8t5Ck/nVoHIBBB
B51G2uaWvZ6Q60jecjlD6fDcUCT8AaB2MBFxvaRgfpgVjzbSarrSlxCkOJC0KGFJUMgjmDUG
zlP95Lq4hWWpbMeQ14pKSM/KugFBz+yzyoyJNlfUovW9wpQVcVsnVCvhp4aVfBqDtA2qBJj3
1gHMb6uSlIyVsE66funX41cacQ82hxtYWhYCkqByCDwNB6Jo50U+fGgR5UUdKfKgVA50+VLr
QHOgGnz40qDy64hptTjiglCAVKUeAA41F2RStdqcnO7wcnvrkEKGMAnCR5YAPrT2sfcNtFvj
qxJuCxHRpwB98+W7mqf1Nut+g3WIzWg6JSP6Cg5G7oEiLtbKS4NzfZaTrjCmwCfma6mQx9I2
V1hRz7QwU5PVSeNc9JZWj+zuS6sIL0ptUpzTQlxW98QCB6V01v8A/p8fHDs0f9IoNHZaUZez
UB1QIUGuzOeOUHdJ+VVs1D2U3m40+MoFPs891CQehIUP+qrnWgOdANPnxrTudxZtcQvvZUSQ
lttAyp1Z4JSOZNBrX25uQm248NAduEpW5HbPDPNR/dA1rNZbam1QEx98uuqJcedPFxw6qUf9
8AK1bLbXm3XLncwlVxkjCgDkMo5Np/PqevGrBOKCZtDcV263EsAqlvqDMdIGSXFcPhxqTPt4
jWu0bPNrCu3fT22dd9Ce+4f8WPjWzbR9NXlV5OTEjbzEIHgo8Fuep0HgKyQCZ+086UN4tQkC
I2eRWe8v1HdFBczpRminQc/eMubV2BsZwkvuKwOGEgA1fFQGP0nbiSs8IcNDX8yzvZ+FXxQM
moO0+92tmUkZxc2gfIhVXTUDbTDVmbmYO9DlNPp8wrGvxoL/AAAp5pUUDzUjaOO8uCmZEBMq
Cv2htIPvge8n1SSPhVblTHGgjXZtN92bWuEolTjYfjqGM747yePA5GPWtyzzhcbXGlji6gFQ
6KGih6HNSrePoG8OW1SSmBMWXIavsoXxU34cMgefE0W4/Q+0b9tUAmJPKpMXwX+0R+fSg6Im
oM8Ie2shsLSFpMJ7fQRoUkpGtXTUKaoJ2ytoOQXIryQeuoOPlQY0vubLqSxJUtyzqISy+o7y
ox5IV1R0PLgeVXlBqQwUqCXGnE4I4hSSPmMU3W0PNqbcQlaFDCkqGQR0Irn+wl7NLKojbku0
E5UwnvORupR95Phy49aCZZ1m37RQ4Mhai+y27CKlfbbBC2j4aEj+Wu1BzXH7SoZmx4e01pWJ
CoSkqXuHRTYOTkciMn0JrrIr7UqO2+woLacSFoUOYPCg9qSFpKVJCkqGCDqCK5+3uKsFyTap
B/QJCiYLp+wonJaJ/D4eA6H0rWuECPcobkWU3vtODXqDyI6Gg2c081Dt9wegykWq7ry8dI0k
+7JT0J5LHMc/WrelA80Z0pUcqB50ozS5UUDzRmjHhUi/3ByO03Cha3CaS2x+595Z8EjWg1oG
brtLKnKCvZ4GY0fPBTn7RWOo4U9qFGWIdmaUQue6A7jQhlOqznlyHjVGNHh2S1JaQQ1FjIyV
KPLiSfE8a0LAy7MkP3yWjcclJCY7ZGrTA4equJ9KD1teQ3srP3RugNAAAcNQKpwhuQGU9G0j
/KKlbYrIsvs6dPaXmmc4zjKv9KtpSAjdHAaUEiygJul7SnQe1JOPEtpzVnNRrIQq4XpeTrM3
dfBtNZ7neY9vdRGSlUic8MsxW/fX4nkkeJ6HpQZrpc49qhqkyVHA7qUJ1U4o8EpHMmp9ogyp
MwXe7pCZRTusRxqmMk8f5jzPp4V7gWh5c4XO7uIemAENNIH1ccdE54nqqrFAZqBeZT1zmfQd
vcKCRmbIT+xb+6P3lfh8tm53Upk/RttCXrksZxxSwn76zyHhxOnWtm0Wxm1Qwy2S4tRK3XVe
86s8VGgV0ltWazPPoQhCIzX1aOCc4wlPxwKw7NwFW6zstu5VIcy6+o8S4rU5/D0rTuX/ABja
GPbU7xjQCmTKONCv9mj866DFA80caVaN8mm3WaXKTnfQ2Q3pnKzon5kUGhswfaXLpcD3vaZi
ktrz7zaO6nHzq8DWhZIAttniwxxabAV/EdT8ya3hQBqdtFF9tsE6OBlSmVFIzjJGo+YqifOg
gEa6ig1LTKMy0Q5SyCt5hC1EdSBn51uaVD2XBjR5lsUAn2GStCBnJ7NXfQT6K+VW6B6Yo50v
WmPOg07rb2rpAciuqKd7VDifebUNQoeINQFLkXaM5aZpRHvsJQfYdwN1wpPdcTpwPAj5ch1X
rU+7Wlu5tIIcVHlMneYkI95tX5g8xzoPdouKLnBS+E7joO480eLbg95J8jU3aABi9WGbyTJV
HJ//AGJwPwqOi5uWi9OPzGQy+sYnsN5KXEj3ZDfUccjjx00NW9q2TO2aedhqC3GwmSwtBz7p
ByMcdM4oLnIUaYrFFkNTIrMllWWnkBaSehGay8qCJcLBl52XaXxClOZ7VO7lp/8AjT+Y11Nc
vs1fX9nLg5ZLynsmUq7is5DROvH7pzx5V9DrndpIjUeUxdXGg9GA9nnNlG8CyTkKPPuqwdNa
DogoHBByDwNFchMt152fAf2fdXMg6FUN09oUD9znjy1862LZtpFktqVNiSInZnDrm4VtoPDB
I1SfMCgvXGBGuURcaW3vtq9CDyIPI1GauMqwOpi3lanoRO6zcOPkl3of3ufxq7Hkx5jfaxX2
n2843mlhQz5ivbjTbyFNuJStChhSVDII6EUA24h1tLja0rQoZSpJyCOoNe9MVzyrPOtCi5YX
kqYKipcB89zr9Wrik+HDWtyFfokiR7JIC4UzOPZ5A3So8O6eCvDBoKumKVFadzuUa1RS/IUo
5O6htAytxXJKRzNA7pco9rhqkSCcZ3UITqpxR4JSOZNaNmhPNuPXa6EJmSE6pJ7sdoahAPzJ
6/GtMbsVab5tK6208nIjRgd4Mg8kj7SzzP5VkVCnbQuoVcEOQrWMKTEJw6/z+sxwH7vHrQeM
K2qlhR3k2WOvQH/1ax/2A/H8Ok0ryhCG0JbbSlKUgBKUjAA6AVqzrtb7dn2yYy0rGdwqys+S
RqfQUE2/5kXyxwsAtqeXIV4dmnI+ZqzIlMRGC9JeQy0OK1qAArkhKuN22nkyrRDSlMZj2YPT
d5AQoneKgnGckHGMdM44VlvNmah2yXdLvJcucppshrtEgNpUe6nDY04kUGvYn7pOZnJtaBHa
kTHHVXB07wwTjCEkanAGp04101rs8S2dotkLckO/rX3VFS3D4n8hXqzQ/YLPDikBKmmUpUB9
7He+eax3G+Qrc52C1qelKGUxmEFbivQcPXFBRyKgy7w/cJCoFgUhbgOHphG80wPDkpXh/rSc
gXO9lYuThgQFaCIyoFxwa++saAHoORq1FisRI6GIzaWmkDCUJGAKDXtdrjWqOW2AVLWd511Z
yt1X3lHnTu9ybtUBclaS4rIS20n3nFn3UjxNbiiEgkkADiTXPwErvt0F0dINujKIhN/8xXAu
kfED46cw37HAXAg5kKKpkhXbSVnm4eIHgOA8qpaYoxS9aB6YqDdT9IX232tJIQyRNkYPJJwh
PjlXLwqxLkNRIrkh9YS02kqUT0FSdmIz5Zk3OagtyrgsOKQT7iBohPoPxoLdAp+tIedAGnSI
p0HPzD9GbWxZQADFyR7O6d3QOJ1QSepGmPCr44VOv9s+lbU7HSd14d9lecbrg1Sc8unrTsNy
+lbU1IUAl4dx5H3HBooY5dfWgomgcaVMCgKQooAoNC8WeHeY4ZloOU6ocQcLbPUGoESQ/sil
MC7ZftSjusS0pz2efsLHTj/vh1xFYpUVmZHcjyWkusuDCkK4EUETZSWwluTbGXm3URF7zCkq
Kt5lfeTqeYzj0roOVfNbrAlbIS23YSlMtrcKW5gG8ktqOShxPUYyCOI8tOlYv10jMpdnWz2y
MoZTLtqt9KhjOdw6jnk0HTGvDzSH2XGXUBbbiSlSTwIIwRUyFtJZ5+AxcGd4nG44rcVnpg4z
VUUECwyFQJblgmOFTjA34jiuLrPLX7yeB8vCtmds9DmS/bWy7Em6fpEde6o46jgfUVkvlsXc
IyHIyw1OjK7SM6R7quh8DwNerLdW7pGKt3spLR3JDCveaX08uhoObmbPTGne1dt8eaoA4kwV
mK+DnO8Ujuk1gF0ftpIVeLjESP2V1hl3J/jTriu7IrUmXOBAOJc1hhWM7rjgBx5caDlmdsJD
aN55+zygeAZfWyr13k14nbX2qWyWLrau3bHNpaXgPEHQj5VQdvbNyCkWqxOXJKte1dbDTJ/m
UOIqDb40/auZJjLXHi2xpQ7X2NoJS4ocACRk+unyoNdG0jcPH93XbkeA9jlJDrQT0TgkisSb
vd/aVTJUGQmWrKfa1sKX2CcaBtBwE+Zzxr6PbrVCtbAahR0MpAwSkd5XmeJrbx4n40HzS27S
22JcA4iE/JlrO6Zdxk95P+U7o8q6D6buMp3DVwsEVvxk9qsfhVK97MW68oUp5oNyMd19vRQP
j971qNYm4ouLlkvltgqntjeaeMdJ9oR1zjU/68waDMYTcreN02tW8FDBRGeQwjHMEA61tRjs
vY2FOxnICFIBVvdqFuK8jkn4VQ/u9Z//ALXC/wD4pqLdLTbpF5hWmHboje6RKlOJZAw2DonO
PtHSg82PaW0RLYgPTAuY+pUh1DTS1ErUc40HEDA9Kxz7u/fbhDhQrVJUlhYlOolHsApI0T10
yc+nCuplPxrXBdkO7rLDQ3lbqcf7PKp+zUV8R3rjMBEu4LDq0n9mj7CPQfjQYzarvcNbldDH
aOvYwBuYPis6mqFstEC0tFEGMhnPvKGqleajqa3caUYoHzpCjFQZk2ReJa7banChhB3Zc1B9
zqhs/fxxPLzoMc9x7aGa5bIpU3b2VbsyQk47Qj9kn8z/ALPQNNIZaS00gIQhISlI0CQOAFY4
kRmFFbjRmw2y0ndSkchWagZ40uVMipd7nvxmm40BKXLhJO4yk8EDmtX7o/HFBp3RJvV3btQS
TCjFL01XAKPFDfjyJ8Ma1fAwK07TbkWyAiOlanV5KnHVe84s6lR/3wrcxQPnSFOkBQB40ZoN
OgR4Vz8jFiv/ALZomBcSEPngGnvsr8lcD46k10Na86GxcITsSSgLZdG6ofmPEcaDPnSgVEsk
12O+qyXBRMthOWXVH/zDXJQ8QNCP9auCgVANP1pCgCaM60U+fGgxSWGpUdbD7aXWljCkKGQR
XIvT5GxcpqK6hT9ldX9U5klbGeKfHHEZ5V2XStefBj3GE5FlthxpwYI/MeNBgUxa73GbfWzG
mtKHcWUhXwPKtD+6FpQ6XIqJERR49hIUn86ioiSrFPSy1IREfWd1p5xGI0wY0SsD3HB1HHHU
1egbRtLkphXJhdunqOEtO6pc8UL4H+tBgVsu9lXZ7QXhIPDekb2KnzdkJjYcmQ7xPcnBABy5
uF1I+zvDhw512NFBydtsdpvEUOrlXGWAohxmVJO82vgUqSMYNXIljtUJSFRrfGbWg5SvswVA
+Z1rXutpe9pNytK0sXADCgr9XIT91Y69Dx/LNZ7y1cu0ZW2qNNZ0fjOe8g9R1HjQam2k9yBs
3KW177gDQOcY3tCfhW5s/b0WuzRoqMZSgFZxjKjqTUj+0RJOzKiD7jyCfmK6SMvtIzTmQQpI
UCPEUGSig1CtdgegbQTrkqct5uSFYaUkjdyoEa51wBgedBdzXLbdMmPEi3lgJEmA8khWPeST
7p8M4+J611XrXObeuBGycsE4K1NpGvE74P5UFi43Fi3252c8rLLaN7u672eAHmcCtPZ+C6wy
7NmoxPnK7V4ZzuD7KB4JHzzU62R13Z6IpS962W0JQzg5El1IwV+KQeHU61sSpbt9fXb7atSY
aSUy5qfm22eajzPAUHjJ2kuiVJO9aIS85xpJdHTqhPwJ68uiHCscdhqKw2wwgNtNpCUpHAAV
k5UByrw8+1HZW8+4lttAypazgAVMuN/jxXxDioVOnq0TGYIJB/fPBI8TWBqzSLmUP7QLQ7un
eRDb/UtnkVffPnpxoMDrkzaclqP2kWzKHffxuuSR91IPupPU8fjV+JGYhRm40ZpLTLYwlCeA
/wB9aygAaDFFAE0UGpl0vAiPohxGVS7g6MoYQdEj7yz9lNB6vV3btTCTuKekvHcYjo951XQd
B1PKsdmtjsdTs64LS7cZIHaKHutp5No6JHzPGla7QtiQqfcXhJuLgwXAMJaT9xA5Dx4mq1AG
iinQLNA406QoGTRSNPHhQGaM0qKCfebU3dI6MLLMplW/HkJHeaX18QeY51jsl1cmByNObSxc
Y5w80OBHJaeqTVXlU26WhE5bUhlwxpzH6mQkZKRzBH2k+B60FLNLNR7TeFvSl225tpj3NoZK
U53Hk/fQeY8OPHoasDFAyaOdKnjwoDPCjlSp8qDBMiMTorkaW0l1lwYUlXP+h8a5qU0/aIy4
11jG7WROqXVAKdjjh3hzAz7w1GvgK6vlRgHIIoOXix5jMRL+y9zZlwxnEWSd4J8Eq94eRrZa
2qZZeDF4ivWx4nA7YbzZ8ljSvcrZpoSVTLTJctkpQGSyB2a9ftI4GsD1yuMNpTV7sxlR+Bfh
gOIV4ls6jxoOgZfakNJdYcQ62rgtCgoH1FaV1tEa5hK17zMlv9VJaO642fA8xrw4Vz0aHsxP
c7a0XJdvfJwQw8WiT/AriPKqYhbSRWwI9zhzcH/1bBQcdMpOvwoNK4zJTMBy17RoR2MlBaRc
Gk/V73IrH2TnXp8K9bEXcORTaJLiDKid1BSrIdbHApPPH4YraXdLqhSmp+zq3GiCCqO8l0K/
lOPnXK3SHbVSUyYEK7WeYk7yB7KSlSuIwAdPTTwoPpOdKeeNcDb9uJ0NhIvVtfWgHHtKEFOf
QgDPqPKt4/2jWndO7FnFWOG4j/3UHX5rgtp50O+3ZMNyUlu2W8F2U8k5KlcN1PU8vU9K0bjt
beb412NvhPR469FqYSXFq6jOB8PnW7ZbR7CpDsHZyVKeGpeuDiWt045I1xr6+NBZajzL200z
2S7ZZEoCQyDh59PIHHupxy4n106BCWIUYJQlthhpOnBKUD8qjrY2kl53pcG3JI/ZILyx6qwK
8o2TiOqC7pIlXJwcPaHTup8kjFB6lbVRQ72FtZeub/NMVO8lPmrgPnQiLebsCbg+q2MbwKY8
VeXCP3nOX8uKssRmIzYbjsoaR91tISPgKyADFBrW+3xLZG7CEwhlvOSE8SepPEnzrapaVrTb
jCt7ZXMktMJxnvqAJ8hxNBtZ1rE/IajMqefcQ20gZUtZwB61D+npdyO7Yrct1s8JcnLbQ8QP
eUPKsjOzgfkJk3qW5cnUq3kNqG6y2fBH9aDCLtPvpCbGgx4m9hU95A1xxCEHj5nTjVW2WuLa
2lpjpUpxw7zrzit5x09VK58/jW4lKUJCUgAAYAA4U/SgZoFHOlyoHmjNKigdANGPCkKAPGnS
NOgVFOlQPlQKVMUGjc7VFujSEyEqC2zvNOtq3XGz1SrlUkXWdYnCzekLkQwe5cGkZwM6BxI4
eY8K6SvKkJWhSVgKSoYKSMgjoaDwxIZkspeYcS42oZSpJyDWSuff2bVEeXKsEr6PeVqpnGWH
D4p5eY+Fe07QOwVKbvkF2KUcZLKFOMK8cgZGehFBdp8q14c6JPa7SHJafQOJbUFY8+lZ/Wgf
KgUEUCgVFHrQKDRnWa2zyTLgsOqPFZQN7/ENannZKA2ndgyJ8EdI8lQB+OavkUufGghmxTUJ
AY2huCcHI7QIX+WtCrBJcH1t/uh/gWlH4Ct64Xm3W4hEuY225phsHeWc8O6Mn5VoLlXq6YFv
j/Rsc8ZEtOXT/C3y/m60GjdLbYrdGSL3OnTs6ttSJK1rUf3UpI8q1Wdkmru40/JgItMRtBCG
GT9cvPNZ4Dy46nNdDa7DGt7hkrW5KmqGFyX1byz5fdHgKqAcaCA1Zbpb20NW29K7FAwlmSwl
YA8xg0xI2mYUrtYFul8wWHlN+nezrV/1pYFBzxvd9QfrNmHgP3JaFfgKZ2impOFbO3LPgAR8
a6DAowKCB9NXpxZ7HZp8p5FyShBz5Yr0X9p33R2cO2w2+fbOqdUP8OBV3AoxQQjaLtK3xOvr
qW1D9XEZS0R/McmtiHs1aIbvbNwkOPZB7R4lxWevezg+VVeVPrQLnQKOfGgUBRRToA0cqDSo
CiinQFIcadIUDo50iKeKAopYoxQM0c6WKYFAUhRijFA6RSCCDqDxFBFGNaCNN2VtMtzthHMZ
8ah6Mrs1A9dNPlWv9D3yGP0C+qeQDkNzWwvPgV8a6HFGNKCAiZtMwg9taoUogfsJJbz/AIhQ
b5d2yO12bkgc+zfSur5FGPCggnaCby2euJPL3f61jRer89+p2ZcCTwLstKfiMV0W6OlAHhQc
8pW1crRLdtgj7xUpxQ/KvSdnpsnW63yY+ObbGGUHwIHGr5FGKDSgWe3W0kw4jTSlEkrAyo+p
1reFLFGKBnhS60YoxQPnRRikBQOikRRigZoFBFLFA+VHWljSjFA+dFLGtAFAGnSxRigfOgUE
UsUDopYoxQPnRRikBQf/2Q==)
В задаче Аполлония необходимо найти все окружности, касающиеся трех данных окружностей. По традиции, решение нужно было найти только с помощью циркуля и линейки.
* * *
Друг и соперник Виета, голландский геометр Адриан ван Роумен (1561–1615) бросил все силы на изучение метода Архимеда и, использовав многоугольники с огромным числом сторон, в 1593 году с точностью определил 16 десятичных знаков π.
Но огромный труд ван Роумена не сравнится с работой, которую проделал Аюдольф ван Цейлен (1540–1610). Этот немецкий математик был одержим идеей вычисления числа π. В 1596 году он нашел первые 20 знаков, позднее доведя число знаков до 35, которые стоит привести здесь:
π = 3,14159265358979323846264338327950288…
В общем случае эта задача имеет восемь различных решений.
Ван Цейлен получил такую известность, что во многих странах число π стало известно как лудольфово число. Свое любимое число ван Цейлен даже повелел высечь на своем надгробии в городе Лейден. К сожалению, во время Второй мировой войны его могила была разрушена. В главе 5 приведена иллюстрация, на которой изображена его могила с нанесенными на каменное надгробие знаками числа π, восстановленная в 2000 году. Упорные труды ван Цейлена заслуживают подобного памятника.