Секреты числа Пи. Почему неразрешима задача о квадратуре круга (Наварро) - страница 2

Глава 1

Все, что вы хотели узнать о числе π, но боялись спросить

Совместны у круга начало и конец.

Гераклит


Число π — самое известное, самое изученное, самое знаменитое и самое упоминаемое. Важность числа π невозможно преувеличить. Его десятичная запись начинается так:

3,14159265358979323846264338327950288419716939937510…

и этих пятидесяти магических цифр достаточно для любых практических вычислений. В математике или физике редко встретится задача, для которой необходимо использовать более десяти знаков π. Для простейших вычислений используются приближенные значения: 3,14 или 3,1416.

Айзек Азимов как-то написал: «Если бы Вселенная имела форму сферы диаметром 80 миллиардов световых лет, то с помощью 35 знаков числа π мы смогли бы вычислить длину ее небесного экватора с погрешностью меньше одной миллионной доли сантиметра».

Если мы запишем число π, рассчитанное на компьютере на данный момент, цифрами размером с эту книгу, то получившийся ряд цифр опишет 500 витков вокруг экватора Земли. Точно известно, что последовательность 0123456789 встречается в числе π начиная с 17387594880-го знака. Какой же наивной кажется убежденность известного голландского математика Лёйтзена Эгберта Яна Брауэра (1881–1966), который считал, что искать эту последовательность в числе π бессмысленно, поскольку необходимое для этого число знаков никогда не будет вычислено.

В XXI веке мы наконец нашли неоспоримую пользу от вычисления числа π с такой точностью: для тестирования суперкомпьютеров используются сложные вычисления, результат которых должен быть заранее известен, и для этого идеально подходит расчет знаков числа Я.


Повторное изобретение колеса

Число π не появилось из пустоты, как это можно было бы предположить. Оно возникло как результат несложных наблюдений. Соотношение между длиной окружности L и ее диаметром d постоянно:

L/d = π.

Или, что то же самое,

L = π∙d = π2r = 2πr,

где r — радиус окружности, d = 2r.



Отношение длины окружности к ее диаметру постоянно. Это соотношение интуитивно понятно и становится очевидно после несложных наблюдений. С увеличением диаметра (диаметр равен удвоенному радиусу r) пропорционально возрастает длина окружности.


Чем больше диаметр колеса, тем больше (и пропорционально больше) расстояние, пройденное точкой колеса при полном обороте. Иными словами,

длина окружности/диаметр окружности = константа ~ 3,14.

Знак ~ читается как «приближенно равно». На протяжении большей части истории числа π ученые старались сделать это приближение как можно более точным, находя всё новые знаки справа от 3,14.