Квантовые миры и возникновение пространства-времени (Кэрролл) - страница 40


⚪ ⚪ ⚪

Идеям Шрёдингера сильно добавило очков уравнение, описывающее изменение волновых функций с течением времени. Хорошее уравнение – все, что нужно физику. Из красивой идеи («у частиц есть волновые свойства») оно делает строгий, бескомпромиссный инструмент. Для человека «бескомпромиссный» – не самое лучшее качество, но для научной теории – то, что нужно. Это характеристика, обеспечивающая точные прогнозы. Когда мы говорим, что в учебниках по квантовой механике много времени уделяется решению уравнений, мы в основном имеем в виду уравнение Шрёдингера.

Именно уравнение Шрёдингера решала бы квантовая версия демона Лапласа, предсказывая будущее Вселенной. И хотя исходная форма уравнения предназначалась для работы с системами, состоящими из единичных частиц, на практике оно отражает гораздо более общую идею, в равной степени применимую к спинам, полям, суперструнам или любой другой системе, которую вы можете описать с помощью квантовой механики.

В отличие от матричной механики, пользующейся языком математических концепций, с которыми не имели дел большинство физиков того времени, уравнение Шрёдингера не слишком отличалось от уравнений Максвелла, описывавших электромагнетизм и по сей день красующихся на поношенных футболках студентов физфака. Волновую функцию можно визуализировать – как минимум убедить себя в том, что вам это удалось. Физическое сообщество не вполне понимало, что делать с Гейзенбергом, но к приходу Шрёдингера физики были готовы. Копенгагенская компания – в особенности юнцы Гейзенберг и Паули – не слишком тепло восприняла конкурирующие идеи, выдвинутые непримечательным стариканом из Цюриха. Но прошло совсем немного времени, и они стали мыслить в категориях волновых функций, как и все прочие.

В уравнении Шрёдингера присутствуют незнакомые символы, но понять его основной посыл несложно. Де Бройль предположил, что импульс волны увеличивается по мере того, как уменьшается ее длина. Шрёдингер предложил схожую вещь, но для энергии и времени: скорость изменения волновой функции пропорциональна имеющемуся у нее количеству энергии. Вот его знаменитое уравнение в самой общей форме:





Не будем углубляться в детали, но интересно посмотреть, как физики обращаются с подобными уравнениями. Здесь не обошлось без математики, однако в конечном итоге это всего лишь символьное выражение той идеи, которую мы уже изложили словами.

Ψ (греческая буква «пси») – это волновая функция. В левой части уравнения указана скорость, с которой волновая функция изменяется во времени. В правой части – константа пропорциональности, в которой учтена, в частности, приведенная постоянная Планка