Квантовые миры и возникновение пространства-времени (Кэрролл) - страница 69

В то время как Уилер и другие размышляли о технических проблемах квантовой гравитации, Эверетт увлекся этими концептуальными проблемами – особенно тем, как быть с измерениями. Ростки многомировой интерпретации проклюнулись в ходе затянувшейся за полночь дискуссии, состоявшейся в 1954 году. Тогда Эверетт беседовал с молодыми коллегами-физиками: Чарльзом Мизнером (также учеником Уилера) и Оге Петерсеном (ассистентом Бора, приехавшим из Копенгагена). Все участники сошлись во мнении, что по этому случаю было выпито изрядное количество хереса.

Очевидно, рассуждал Эверетт, если мы собираемся говорить о Вселенной в терминах квантовой теории, мы не можем выделить отдельную классическую область. Каждую часть Вселенной потребуется рассматривать согласно правилам квантовой механики, то же касается и наблюдателей внутри нее. Будет всего одно квантовое состояние, описываемое (термин предложил Эверетт) «универсальной волновой функцией» (а мы называем ее «волновой функцией Вселенной»).

Если все в мире квантовое, а Вселенная описывается единой волновой функцией, то как же должно происходить измерение? По всей видимости, полагал Эверетт, измерение происходит, когда одна часть Вселенной каким-то подходящим образом взаимодействует с другой ее частью. Он отметил, что подобное должно происходить автоматически, просто в силу эволюции волновой функции согласно уравнению Шрёдингера. Нам вообще не требуется изобретать никаких специальных правил измерения, ведь физические контакты происходят постоянно.

Именно поэтому, подготовив работу на эту тему, Эверетт назвал ее «Формулировка квантовой механики через “соотнесенные состояния”». Когда измерительный прибор взаимодействует с квантовой системой, они оказываются в состоянии запутанности друг с другом. Здесь нет никаких коллапсов волновой функции или классических областей. Сам прибор эволюционирует в суперпозицию, запутываясь с состоянием наблюдаемого предмета. Определенный с виду результат измерения («у электрона верхний спин») справедлив только по отношению к конкретному состоянию аппарата («я измерил спин электрона и узнал, что он верхний»). Другие возможные результаты экспериментов по-прежнему существуют и совершенно реальны, но относятся к другим мирам. Все, что от нас требуется – набраться смелости и признать то, о чем квантовая механика «пытается рассказать» нам с самого начала.


⚪ ⚪ ⚪

Давайте подробнее проговорим о том, что именно происходит в момент измерения, согласно теории Эверетта.

Допустим, у нас есть вращающийся электрон, который можно наблюдать в состоянии либо верхнего, либо нижнего спина относительно некоторой выбранной оси. До измерения электрон обычно находится в некоторой суперпозиции верхнего и нижнего спинов. Также у нас есть измерительный прибор, который сам является полноценной квантовой системой. Представьте, что она может находиться в суперпозиции трех разных возможностей: в ней может быть измерен верхний спин, в ней может быть измерен нижний спин либо спин может быть еще не измерен – последняя ситуация называется состоянием «готовности».