Эксперимент продолжается (Шаталов) - страница 98

О трудностях комплектования первого экспериментального класса теперь уже можно вспоминать с улыбкой, но в те дни не оставалось ничего иного, кроме как проводить индивидуальные беседы с родителями и учащимися, объясняя им всю вздорность слухов. Пять дней подряд в каждой семье проходили малые педагогические советы. Нельзя было потерять ни одного ученика. Заменить их, в принципе, было нетрудно: в эти же дни кабинет Е. Т. Демкович осаждали десятки родителей, просивших зачислить их детей в экспериментальный класс. Но то были родители учащихся, имевших и по математике и по другим предметам почти одни сплошные отличные оценки. Можно ли было произвести такую подмену? Как отнеслись бы к этому учителя школы? Кто и когда принял бы всерьез даже самые феноменальные результаты на выходе?..

- Валера, иди сюда.

- Не пойду.

- Иди сюда! С тобой хотят поговорить.

- Не хочу.

Заходим на кухню. Валерка забрался за газовую плиту, и никакими усилиями выудить его оттуда оказалось невозможно.

- Никуда я не пойду. Все равно я ничего не знаю. Мы с Витькой после восьмого класса в культпросветный техникум пойдем: там математику не сдают.

Такой реакции подростка на возможность учиться в экспериментальном классе едва ли стоило удивляться. Вот выписка всех его оценок из классного журнала за целое полугодие.

Алгебра: 3 3 3 3 3 2 3 3 2 3 4 2 3.

Геометрия: 3 3 3 3 2 3 3 3.

Но и эти оценки не отражали истинного положения дел. 29 сентября, через 6 дней после начала работы экспериментального класса, совместно с администрацией школы была проведена первая контрольная работа. Вот один из ее вариантов. Над ним, кстати, более 3 часов трудился и Валерка.

1. Выполнить действия:

2. Упростить:

3. Решить задачу: "На заводе 35% всех рабочих - женщины, а остальные мужчины, которых на заводе на 252 человека больше, чем женщин. Определить общее число рабочих".

4. Решить задачу: "Меньшая сторона прямоугольника - 12,5 см, угол между диагоналями составляет 120°. Определить длину диагонали".

5. Сформулируйте свойство перпендикуляра через середину отрезка. Докажите это свойство.

Итоги этой работы оказались следующими: "5" - 0, "4" - 1, "3" - 8, "2" - 17, "1" - 10.

Справка: балл "1" выставлялся только в том случае, если учащийся из 5 предложенных упражнений не решил ни одного.

В числе последних 10 был и Валерий Козловский.

Параллельно эта же работа была проведена в лучшем из четырех восьмых классов школы. Результаты там оказались значительно более высокими: "5" - 1, "4" - 6, "3" - 11, "2" - 16, "1" - 1.

Если сопоставить результаты лучшего класса с материалами, полученными АПН СССР, то следует признать, что проводить объективные срезы и контрольные работы сотрудники академии умеют. Им бы еще свободу действий и - свободу печати!