, к массе, движущейся со скоростью
v, должно оказаться равным
m>w/m>v=Ц(1-u>2/c>2). (16.9).
Перейдем к предельному случаю, когда wстремится к нулю. При очень малых wвеличины vи uпрактически совпадут, m>w®m>0, a m>v®m>u. Окончательный результат таков:
Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольных w, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника
Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства при w—>0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты предположим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).
Фиг. 16.4. Две картины неупругого соударения тел равной массы.
Массы тел до столкновения равны, как мы знаем, m>0/Ц(1- w>2/c>2). Предположив сохраняемость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образованного тела. Представим себе бесконечно малую скорость и, поперечную к скоростям w(можно было бы работать и с конечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, двигаясь в лифте со скоростью -u. Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неизвестной массой М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М,движущаяся вверх со скоростью u, много меньшей и скорости света и скорости w. Импульс должен остаться прежним; посмотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2m>wu, а потом стал р'=M>uu. Но M>uиз-за малости u, по существу, совпадает с М>0. Благодаря сохранению импульса
М>0=2m>w. (16.11)
Итак, масса тела, образуемого при столкновении двух одинаковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не правда ли, поразительно! Оказывается, сохранение импульса в столкновении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!