§ 2. Закон Кулона; наложение сил
Логично было бы принять за отправную точку уравнения (4.5) и (4.6). Но легче начать с другого, а потом вернуться к этим уравнениям. Результат получится одинаковый. Мы начнем с закона, о котором говорилось раньше,— с закона Кулона, утверждающего, что между двумя покоящимися зарядами действует сила, прямо пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния между ними. Сила направлена по прямой от одного заряда к другому.
Закон Кулона
(4.9)
здесь F>1 — сила, действующая на заряд q>1; е>12 — единичный вектор, направленный от q>2к q>1 , а г>12— расстояние между q>1 и q>2. Сила F>2, действующая на q>2, равна и противоположна силе F>1. Множитель пропорциональности по историческим причинам пишется в виде >1/>4яе>0. В системе единиц СИ, которой мы пользуемся, он определяется как 10>-7 от квадрата скорости света. Так как скорость света примерно 3·10>8м/сек, то множитель приблизительно равен 9·10>9, и единица оказывается равной ньютон·м>2/кулон>2, или вольт ·м/кулон
(4.10)
Если зарядов больше двух (а именно такие случаи наиболее интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со стороны всех прочих зарядов. Этот экспериментальный факт называется «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если добавить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).
Применяя закон Кулона, удобно ввести понятие об электрическом поле. Мы говорим, что поле Е(1) — это сила, действующая со стороны прочих зарядов на единицу заряда q>1 . Деля (4.9) на q>1 ,мы получаем для действия всех зарядов, кроме q>1,
(4.11)
Кроме того, мы считаем, что Е(1) описывает нечто, существующее в точке (1), даже если в ней нет заряда q>1(в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).
Электрическое поле Е — это вектор, так что в (4.11) на самом деле написаны три уравнения, по одному для каждой компоненты. Расписывая x-компоненту в явном виде, получаем
(4.12)
и точно так же для остальных компонент.
Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть q>j>— величина j-го заряда, а г>1>j>— смещение q>jот точки (1); тогда мы напишем