Фейнмановские лекции по физике 5 (Фейнман) - страница 46

из дробинок, а понимаем, что это просто модель, помогающая нам прийти к правильной математической теории, то ничего плохого в таком способе рассуждений нет.

Предположим, что мы на мгновение представили себе элект­рическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!).



Фиг. 4.5. Поток Eиз поверхности Sравен нулю.

Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h — вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r>2. Теперь мы желаем исполь­зовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь прос­той закон, мы хотим трусливо протащить то же самое, но с зад­него хода. Немного терпения! Это окажется небесполезным.) Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как пока­зано на фиг. 4.5. Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и полу­чается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На бо­ковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r>2, а площадь грани растет как r>2, так что их произведение от r не зависит. Приток Е через грань а в точности гасится оттоком через грань b. Суммарный поток через Sравен нулю, а это все равно, что сказать, что

(4.30)

на этой поверхности.


Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены отно­сительно радиуса. Хотя это верно всегда, но для наших целей

Фиг. 4.6. Поток Е из поверхности Sравен нулю.

достаточно только показать, что это справедливо тогда, когда «торцы» малы и стягивают малый угол с вершиной в источнике, т. е. в действительности бесконечно малый угол. На фиг. 4.6 показана поверхность S, «боковые грани» которой радиальны, а «торцы» перекошены. На рисунке они не малы, но надо пред­ставить себе, что на самом деле они очень малы. Тогда поле Е над поверхностью будет достаточно однородным, так что можно взять его значение в центре. Если торец наклонен на угол q, то его площадь возрастает в 1/cosq раз, а