Фейнмановские лекции по физике 5 (Фейнман) - страница 49

Теперь мы хотим записать закон Гаусса на языке произ­водных. Чтобы это сделать, применим его к поверхности бес­конечно малого куба. В гл. 3 мы показали, что поток Е из такого куба равен дивергенции С·Е, помноженной на объем dVкуба. Заряд внутри dVпоопределению r равен rdV, так что закон Гаусса дает


или


(4.38)

Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рас­смотрены позже).

§ 7. Поле заряженного шара

Одной из самых трудных задач, которую пришлось нам ре­шать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку за­коны электростатики и тяготения совпадают, то то же доказа­тельство может быть проведено и для поля тяготения.)


Зададим вопрос: каково электрическое поле Е в точке Р где-то снаружи сферы, наполненной однородно распределенным зарядом? Так как здесь нет «выделенного» направления, то закон­но допустить, что Е всюду направлено прямо от центра сферы. Рассмотрим воображаемую сферическую поверхность, концент­рическую со сферой зарядов и проходящую через точку Р (фиг. 4.11). Для этой сферы поток наружу равен



Фиг. 4.11. Применение закона Гаусса для определения поля одно­родно заряженного шара.

1 распределение заряда r; 2 — гаус­сово поверхность S.


Закон Гаусса утверждает, что этот поток равен суммарному за­ряду сферы Q(деленному на e>0):

или

(4.39)

а это как раз та формула, которая получилась бы для точеч­ного заряда Q. Мы решили проблему Ньютона проще, без ин­теграла. Конечно, это кажущаяся простота; вам пришлось зат­ратить какое-то время на то, чтобы разобраться в законе Гаус­са, и вы можете думать, что на самом деле время нисколько не сэкономлено. Но когда вам придется часто применять эту тео­рему, то она практически окупится. Все дело в привычке.

§ 8. Линии поля; эквипотенциальные поверхности

Теперь мы собираемся дать геометрическое описание электро­статического поля. Два закона электростатики: один — о пропор­циональности потока и внутреннего заряда и другой — о том, что электрическое поле есть градиент потенциала, могут также быть изображены геометрически. Мы проиллюстрируем это дву­мя примерами.