Эту проблему можно решить, приняв тот факт, что процесс построения происходит только в идеальной области фигур. Например, представим себе круг и прямую: они пересекаются или в двух точках, или в одной (в случае с касательной), или вообще не пересекаются. Если они пересекаются в двух точках, то эти точки существуют в идеальной геометрии, или, иначе говоря, в геометрической методологии. Например:
РИС. 1
Книга I, предложение 6. Если у треугольника два угла равны, то и противоположные им стороны равны.
Евклид рассматривает фигуру на рисунке 1 (треугольник АВС с равными углами СВА и АСВ, у которого при этом противоположные стороны АВ и АС неравны; например, одна, АВ, длиннее АС).
Но такого треугольника не существует. Это иллюстрация дополнительного постулата, который оказывается ложным.
Рисунок 2 проясняет ход рассуждений Евклида. Мы и включаем его в эту главу, поскольку на его примере видны трудности использования ошибочных фигур. Они используются, чтобы облегчить понимание доказательства, но этой цели труднее достичь, когда фигуры заведомо невозможны.
РИС. 2
В таких доказательствах нет простоты, характерной для анализа, но в них видна глубина знаний геометрии и логико-дедуктивного метода, присущего синтезу. Необходимо упомянуть, что эта доказательная техника пришлась по нраву не всем древнегреческим геометрам, поэтому в различных комментариях к «Началам» встречаются и другие доказательства, приведенные, чтобы избежать ее. Яркий тому пример — Герои Александрийский.
Так или иначе, структура «Начал» была достаточно солидной, чтобы затмить все предшествующие им трактаты. Возможно, именно в разработке этой структуры и заключается главное наследие Евклида. Теперь мы перейдем к изучению содержания: рассмотрим книгу I и метод танграма, роль бесконечности, значение и происхождение постулата о параллельных, природу и значение иррациональных величин, а также метод исчерпывания, построение Платоновых тел и, наконец, величайший вклад в науку Пифагора — арифметику.
ГЛАВА 3
Книга I и геометрия Вселенной
При изучении первой книги «Начал» мы сталкиваемся с фундаментальными вопросами евклидовой геометрии. Некоторые из них сугубо технического толка, а другие, более интересные, затрагивают отношение геометрии к проблеме бесконечности или соотнесение абстрактных геометрических фигур с окружающей действительностью. Благодаря вопросу, вытекающему из знаменитого постулата о параллельных прямых, мы проделаем путешествие во времени сквозь два тысячелетия, вплоть до неевклидовой геометрии, совершившей революцию в науке XIX века.